高一數(shù)學(xué)知識(shí)點(diǎn)小結(jié)
一、定義與定義式:
自變量x和因變量有如下關(guān)系:
=x+b
則此時(shí)稱是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),是x的正比例函數(shù)。
即:=x(為常數(shù),≠0)
二、一次函數(shù)的性質(zhì):
1.的變化值與對應(yīng)的x的變化值成正比例,比值為
即:=x+b(為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在軸上的截距。
三、一次函數(shù)的圖像及性質(zhì): 1.作法與圖形:通過如下3個(gè)步驟
(1)列表;
。2)描點(diǎn);
。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和軸的`交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,),都滿足等式:=x+b。(2)一次函數(shù)與軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.,b與函數(shù)圖像所在象限:
當(dāng)>0時(shí),直線必通過一、三象限,隨x的增大而增大;
當(dāng)<0時(shí),直線必通過二、四象限,隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b<0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)>0時(shí),直線只通過一、三象限;當(dāng)<0時(shí),直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,1);B(x2,2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為=x+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,),都滿足等式=x+b。所以可以列出2個(gè)方程:1=x1+b……①和2=x2+b……②
。3)解這個(gè)二元一次方程,得到,b的值。
。4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用: 1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人補(bǔ)充)
1.求函數(shù)圖像的值:(1-2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與軸平行線段的中點(diǎn):|1-2|/2
4.求任意線段的長:√(x1-x2)^2+(1-2)^2(注:根號(hào)下(x1-x2)與(1-2)的平方和)
【高一數(shù)學(xué)知識(shí)點(diǎn)小結(jié)】相關(guān)文章:
高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)小結(jié)06-15
小升初數(shù)學(xué)的重要知識(shí)點(diǎn)小結(jié)03-09
高一數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)小結(jié)06-15
高一數(shù)學(xué)教學(xué)小結(jié)范文04-08
高三數(shù)學(xué)數(shù)列知識(shí)點(diǎn)小結(jié)07-07
初二數(shù)學(xué)知識(shí)點(diǎn)小結(jié)05-28
初三數(shù)學(xué)知識(shí)點(diǎn)小結(jié)05-27