亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

《比例的意義》教案

時間:2024-04-12 08:44:54 藝詩 意義 我要投稿

《比例的意義》教案(精選15篇)

  作為一名教師,就有可能用到教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【帋痛蠹艺淼摹侗壤囊饬x》教案,歡迎大家借鑒與參考,希望對大家有所幫助。

《比例的意義》教案(精選15篇)

  《比例的意義》教案 1

  教學(xué)內(nèi)容:

  比例的意義和基本性質(zhì)。

  教學(xué)要求:

  使學(xué)生理解比例的意義,會用比例的意義正確地判斷兩個比是否 成比例,使學(xué)生理解比例的基本性質(zhì)。

  教學(xué)重點(diǎn):

  理解比例的意義和基本性質(zhì)。

  教學(xué)難點(diǎn):

  靈活地判斷兩個比是否組成比例。

  教 具:

  投影機(jī)等。

  教學(xué)過程:

  一、復(fù)習(xí)。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 4.5:2.7 10:6

  二、提示課題,引入新課。

  1、引入:如果有兩個比是相等的',那么這兩個相等的比以叫做什么?它有什么樣的性質(zhì)?這節(jié)課我們就一起來研究它。

  2、引入新課。

  三、導(dǎo)演達(dá)標(biāo)。

  1、教學(xué)比例的意義。

  (1)引導(dǎo)學(xué)生觀察課本的表格后回答:

  A、第一次所行駛的路程和時間的比是什么?

  B、第二次所行駛的路程和時間的比是什么?

  C、這兩次比的比值各是什么?它們有什么關(guān)系?

  板書: 80:2=200:5 或 =

 。2)引出比例的意義。

  A、表示兩個比相等的式子叫做比例。

  B、討論:組成比例必須具備什么條件?如何判斷兩個比是不是組成比例的?比和比例有什么區(qū)別?

  C、判斷兩個比能不能組成比例,關(guān)鍵是看兩個比的比值是否相等。

  D、做一做。(先練習(xí),后講評)

  2、教學(xué)比例的基本性質(zhì)。

 。1)看書后回答:

  A、什么叫做比例的項(xiàng)?

  B、什么叫做比例的外項(xiàng)、內(nèi)項(xiàng)?

  (2)引導(dǎo)學(xué)生總結(jié)規(guī)律?

  先讓學(xué)生計(jì)算,兩個外項(xiàng)的積,再計(jì)算兩個內(nèi)項(xiàng)的積,最后讓學(xué)生總結(jié)出比例的基本性質(zhì),然后強(qiáng)調(diào),如果把比例寫成分?jǐn)?shù)形式,比例的基本性質(zhì)就是等號兩端的分子和分母分別交叉相乘的積相等。

  3、練習(xí):判斷下面的哪組比可以組成比例。

  6:9和9:12 1.4:2和7:10

  四、鞏固練習(xí):

  第一、二題。(指名回答,集體訂正)

  五、總結(jié):

  今天我們學(xué)習(xí)了什么?

  比例的意義和比例的基本性質(zhì)及怎樣判斷兩個比是否可以組成比例的方法。

  六、作業(yè):第二題。

  《比例的意義》教案 2

  教學(xué)目標(biāo)

  1.使學(xué)生初步認(rèn)識正比例的意義、掌握正比例意義的變化規(guī)律。

  2.學(xué)會判斷成正比例關(guān)系的量。

  3.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、概括的能力。

  教學(xué)重點(diǎn)和難點(diǎn)

  理解正比例的意義,掌握正比例變化的規(guī)律。

  教學(xué)過程設(shè)計(jì)

  (一)復(fù)習(xí)準(zhǔn)備

  請同學(xué)口述三量關(guān)系:

  (1)路程、速度、時間;

  (2)單價(jià)、總價(jià)、數(shù)量;

  (3)工作效率、時間、工作總量。

  (學(xué)生口述關(guān)系式、老師板書。)

  (二)學(xué)習(xí)新課

  今天我們進(jìn)一步研究這些數(shù)量關(guān)系中的一些特征,請同學(xué)們回答老師的問題。

  幻燈出示:

  一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?

  生:60千米、120干米、180千米……

  師:根據(jù)剛才口答的問題,整理一個表格。

  出示例1。(小黑板)

  例1 一列火車行駛的時間和所行的路程如下表。

  師:(看著表格)回答下面的問題。表中有幾種量?是什么?

  生:表中有兩種量,時間和路程。

  師:路程是怎樣隨著時間變化的?

  生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……

  師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關(guān)聯(lián)的量。

  (板書:兩種相關(guān)聯(lián)的量)

  師:表中誰和誰是兩種相關(guān)聯(lián)的量?

  生:時間和路程是兩種相關(guān)聯(lián)的量。

  師:我們看一看他們之間是怎樣變化的?

  生:時間由1小時變2小時,路程由60千米變?yōu)?20千米……時間擴(kuò)大了,路程也隨著擴(kuò)大,路程隨著時間的變化而變化。

  師:現(xiàn)在我們從后往前看,時間由8小時變?yōu)?小時、6小時、4小時……路程又是如何變化的?

  生:路程由480千米變?yōu)?20千米、360千米……

  師:從上面變化的情況,你發(fā)現(xiàn)了什么樣的規(guī)律?(同桌進(jìn)行討論。)

  生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。

  師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?

  (分組討論)

  師:請同學(xué)發(fā)表意見。

  生:第一題時間擴(kuò)大了,行的路程也隨著擴(kuò)大;第二題時間縮小了,所行的路程也隨著縮短了。

  師:我們對這種變化規(guī)律簡稱為“同擴(kuò)同縮”。(板書)讓我們再看一看,它們擴(kuò)大縮小的變化規(guī)律是什么?

  師:根據(jù)時間和路程可以求出什么?

  生:可以求出速度。

  師:這個速度是誰與誰的比?它們的結(jié)果又叫什么?

  生:這個速度是路程和時間的比,它們的結(jié)果是比值。

  師:這個60實(shí)際是什么?變化了嗎?

  生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。

  駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。

  師:誰是定量時,兩種相關(guān)聯(lián)的量同擴(kuò)同縮?

  生:速度一定時,時間和路程同擴(kuò)同縮。

  師:對。這兩種相關(guān)聯(lián)的量的商,也就是比值一定時,它們同擴(kuò)同縮。我們看著表再算一算表中路程與時間相對應(yīng)的商是不是一定。

  (學(xué)生口算驗(yàn)證。)

  生:都是60千米,速度不變,符合變化的規(guī)律,同擴(kuò)同縮。

  師:同學(xué)們總結(jié)得很好。時間和路程是兩種相關(guān)聯(lián)的量,路程是隨著時間的變化而變化的:時間擴(kuò)大,路程也隨著擴(kuò)大;時間縮小,路程也隨著縮小。擴(kuò)大和縮小的規(guī)律是:路程和時間的比的比值總是一樣的。

  師:誰能像老師這樣敘述一遍?

  (看黑板引導(dǎo)學(xué)生口述。)

  師:我們再看一題,研究一下它的變化規(guī)律。

  出示例2。(小黑板)

  例2 某種花布的米數(shù)和總價(jià)如下表:

  (板書)

  按題目要求回答下列問題。(幻燈)

  (1)表中有哪兩種量?

  (2)誰和誰是相關(guān)聯(lián)的量?關(guān)系式是什么?

  (3)總價(jià)是怎樣隨著米數(shù)變化的?

  (4)相對應(yīng)的總價(jià)和米數(shù)的比各是多少?

  (5)誰是定量?

  (6)它們的變化規(guī)律是什么?

  生:(答略)

  師:比較一下兩個例題,它們有什么共同點(diǎn)?

  生:都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。

  師:對。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的`兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是今天我們學(xué)習(xí)的新內(nèi)容。(板書課題:正比例的意義)

  師:你能按照老師說的敘述一下例1中兩個相關(guān)聯(lián)的量之間的關(guān)系嗎?

  生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關(guān)系是正比例關(guān)系。

  師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)

  師:很好。請打開書,看書上是怎樣總結(jié)的?

  (生看書,并畫出重點(diǎn),讀一遍意義。)

  師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關(guān)聯(lián)的量與定量的關(guān)系?

  師:你能舉出日常生活中成正比例關(guān)系的兩種相關(guān)聯(lián)的量的例子嗎?

  生:(答略)

  師:日常生活和生產(chǎn)中有很多相關(guān)聯(lián)的量,有的成正比例關(guān)系,有的是相關(guān)聯(lián),但不成比例關(guān)系。所以判斷兩種相關(guān)聯(lián)的量是否成正比例關(guān)系,要抓住相對應(yīng)的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關(guān)系。

  (三)鞏固反饋

  1.課本上的“做一做”。

  2.幻燈出示題,并說明理由。

  (1)蘋果的單價(jià)一定,買蘋果的數(shù)量和總價(jià)( )。

  (2)每小時織布米數(shù)一定,織布總米數(shù)和時間( )。

  (3)小明的年齡和體重( )。

  (四)課堂總結(jié)

  師:今天主要講的是什么內(nèi)容?你是如何理解的?

  (生自己總結(jié),舉手發(fā)言。)

  師:打開書,并說出正比例的意義。有什么不明白的地方提出來。

  (五)布置作業(yè)

  課堂教學(xué)設(shè)計(jì)說明

  第一部分:復(fù)習(xí)三量關(guān)系,為本節(jié)內(nèi)容引路。

  第二部分:新課從創(chuàng)設(shè)正比例表象入手,引導(dǎo)學(xué)生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關(guān)聯(lián)的兩個量、商一定展開思路,結(jié)合例題中的數(shù)據(jù)整理知識,發(fā)現(xiàn)規(guī)律,由討論表象到抽象概念,使知識得到深化。

  第三部分:鞏固練習(xí)。幫助學(xué)生鞏固新知識,由此驗(yàn)證學(xué)生對知識的理解和掌握情況,幫助學(xué)生掌握判斷方法。最后指導(dǎo)學(xué)生看書,抓住本節(jié)重點(diǎn),突破難點(diǎn)。安排適當(dāng)?shù)木毩?xí)題,在反復(fù)的練習(xí)中,加強(qiáng)概念的理解,牢牢掌握住判斷的方法。合理安排作業(yè),進(jìn)一步鞏固所學(xué)知識。

  總之,在設(shè)計(jì)教案的過程中,力爭體現(xiàn)教師為主導(dǎo),學(xué)生為主體的精神,使學(xué)生認(rèn)識結(jié)構(gòu)不斷發(fā)展,認(rèn)識水平不斷提高,做到在加強(qiáng)雙基的同時發(fā)展智力,培養(yǎng)能力,并為以后學(xué)習(xí)打下良好的基礎(chǔ)。

  《比例的意義》教案 3

  教學(xué)內(nèi)容:

  補(bǔ)充有關(guān)比例意義、基本性質(zhì)和解比例的練習(xí)

  教學(xué)目標(biāo):

  1.進(jìn)一步理解和掌握比例的意義,能根據(jù)比例的意義判斷兩個比能否組成比例。

  2.進(jìn)一步理解和掌握比例的基本性質(zhì),能根據(jù)比例的基本性質(zhì)正確判斷兩個比能否組成比例,進(jìn)一步掌握解比例的方法。

  3.通過練習(xí),讓學(xué)生在思考、交流中培養(yǎng)分析、概括能力,體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)學(xué)學(xué)習(xí)的樂趣。

  教學(xué)措施:

  幫助學(xué)生系統(tǒng)整理前幾節(jié)課學(xué)習(xí)的數(shù)學(xué)知識;設(shè)計(jì)一些有針對性的練習(xí);練習(xí)過程中注重分析學(xué)生練習(xí)情況,加強(qiáng)課堂上對學(xué)習(xí)困難生的輔導(dǎo)。

  教學(xué)準(zhǔn)備:

  上傳補(bǔ)充練習(xí)

  教學(xué)過程:

  一、整理知識

  1.提問:前幾節(jié)課我們學(xué)習(xí)了比例的意義、基本性質(zhì)和解比例這三部分內(nèi)容。你有哪些收獲?請你和同桌交流一下。

  2.學(xué)生同桌之間進(jìn)行交流。

  3.指名學(xué)生交流,教師相機(jī)板書,將知識點(diǎn)進(jìn)行梳理和歸納。

  4.揭示課題:運(yùn)用比例的意義和比例的基本性質(zhì)可以解決一些數(shù)學(xué)問題。這節(jié)課我們繼續(xù)學(xué)習(xí)有關(guān)內(nèi)容。(板書課題)

  二、基本練習(xí)

  1.判斷。

 。1)比例是一個等式。

 。2)甲數(shù)和乙數(shù)的比值是2/3,如果甲、乙兩個數(shù)同時擴(kuò)大3.5倍,它們的比值還是2/3。

 。3)比例的`兩個內(nèi)項(xiàng)減去兩個外項(xiàng)的積,差是0。

 。4)任意兩個正方形的周長與邊長的比都可以組成比例。

  (5)如果A╳9=B╳6(A、B均不為0),那么,A與B的比是3:2。

  組織學(xué)生思考、交流,鼓勵學(xué)生完整地說出自己的分析推理過程。

  2.根據(jù)下面的等式,寫出幾個不同的比例。

  3╳40=8╳15

 。1)現(xiàn)在已知的是一個等式,等式左、右兩邊的兩個數(shù)分別是寫出的比例中的什么?

 。2)你能有序地寫出所有的比例,既不重復(fù)也不遺漏嗎?(學(xué)生獨(dú)立完成)

 。3)學(xué)生交流思考過程,教師及時講評:可以先把3和40作為比例的內(nèi)項(xiàng),寫出四個比例;然后再把8和15作為內(nèi)項(xiàng)寫出另外四個比例。

  3.判斷四個數(shù)10.5、5/4、20/21、8能否組成比例?

  (1)要判斷四個數(shù)能否組成比例有哪些方法?(根據(jù)比例的意義或比例基本性質(zhì))

 。2)你認(rèn)為這里選擇哪種方法比較方便?

 。3)指名學(xué)生交流后,學(xué)生寫出比例。

  小結(jié):如果給我們四個數(shù),要讓我們判斷能否組成比例,一般,我們可以運(yùn)用比例的基本性質(zhì)來判斷比較簡便;痉椒ㄊ窍葘⑦@四個數(shù)從大到小排列,然后用最大數(shù)乘最小數(shù),中間兩數(shù)相乘,看看乘積是否相等,最后根據(jù)比例基本性質(zhì)來寫出不同的比例。

  4.按要求組成比例。

 。1)從2、10、4.5、9、5五個數(shù)中選出四個組成一個比例。

  (2)從18的所有約數(shù)中選出四個組成一個比例。

 。3)把8和9作兩個外項(xiàng),比值是1/2的一個比例。

 。4)給5、8、0.4三個數(shù)分別配上一個不同的數(shù),組成兩個不同的比例.

  逐個出示題目,學(xué)生練習(xí)之前先要弄清題目要求。

  學(xué)生完成后進(jìn)行交流,要求說說自己的思考過程,教師及時評價(jià)。

  教師要及時關(guān)注學(xué)生存在的問題及時輔導(dǎo)。

  5.根據(jù)比例的基本性質(zhì),在括號里填上合適的數(shù)。

  15:3=( ):1 2:0.5=12:( )

  0.3/4=( )/32 7/9:( )=1/2:3/5

  ( )/12=3/18 ( ):4.5=0.4:9

  先讓學(xué)生根據(jù)比例基本性質(zhì)來思考并求出括號中的數(shù),然后請學(xué)生交流思考過程。

  三、解比例

  25:7=x:35 514: 35= 57:x 23:x= 12:14 x:15=13: 56

  2、根據(jù)下面的條件列出比例,并且解比例

  a. 96和x的比等于16和5的比。

  b. 45 和x的比等于25和8的比。

  c. 兩個外項(xiàng)是24和18,兩個內(nèi)項(xiàng)是x和36 。

  四、全課總結(jié)

  通過本節(jié)課的學(xué)習(xí),你又有哪些收獲?你還有什么問題沒有弄明白嗎?

  四、布置作業(yè)

  補(bǔ)充相應(yīng)練習(xí)

  《比例的意義》教案 4

  教學(xué)要求:

  1.使學(xué)生認(rèn)識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):

  認(rèn)識正比例關(guān)系的意義。

  教學(xué)難點(diǎn):

  掌握成正比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度時間路程

  (2)單價(jià)數(shù)量總價(jià)

  (3)工作效率工作時間工作總量

  2.引入新課。

  上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,先認(rèn)識正比例關(guān)系的意義。(板書課題)

  二、自主探究:

  1.教學(xué)例1。

  出示例l。讓學(xué)生計(jì)算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:

 。1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點(diǎn)嗎?

 。3)分別找出面積與款項(xiàng)對應(yīng)的數(shù),面積與寬的比各是幾比幾?比值各是多少?

  引導(dǎo)學(xué)生進(jìn)行討論,得出:

  (1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長)的變化而變化。

  (2)寬(長)擴(kuò)大,面積也擴(kuò)大;寬(長)縮小,面積也縮小。

  (3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的`比值總是一定的。(板書:面積和寬比的比值一定)因?yàn)槊娣e和寬(面積與長)對應(yīng)數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補(bǔ)充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

  2.教學(xué)例2。

  出示例2。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補(bǔ)充成單價(jià)一定時,總價(jià)和數(shù)量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?

  (①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第95頁最后連個自然段。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子=k(一定)來表示。

  4.教學(xué)例3學(xué)生看書自學(xué),小組討論,集體交流。

  (1)數(shù)量與時間是不是兩種相關(guān)聯(lián)的量?

 。2)數(shù)量與時間有什么關(guān)系?他們的比值是誰?比值是不是不變的?

 。3)判斷數(shù)量與時間是不是成正比例?

  5.完成97頁練一練。

  三、鞏固練習(xí)

  1.提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  2.做練習(xí)十一第1題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計(jì)算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  五、家庭作業(yè)

  練習(xí)十一第2~6題。

  《比例的意義》教案 5

  教學(xué)內(nèi)容:

  教科書第19—21頁正比例的意義,練習(xí)六的1—3題。

  教學(xué)目的:

  1.使學(xué)生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  2.初步培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題。

  3.初步滲透函數(shù)思想。

  教具準(zhǔn)備:

  投影儀、投影片、小黑板。

  教學(xué)過程:

  一、復(fù)習(xí)

  用,投影片逐一出示下面的題目,讓學(xué)生回答。

  1.已知路程和時間,怎樣求速度?板書: =速度

  2.已知總價(jià)和數(shù)量,怎樣求單價(jià)?板書: =單價(jià)

  3.己知工作總量和工作時間,怎樣求工作效率?板書:=工作效率

  4.已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書: =公頃產(chǎn)量

  二、導(dǎo)人新課

  教師:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系中的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。(板書課題:正比例的意義)

  三、新課

  1.教學(xué)例1。

  用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:

  提問:

  “誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)

  “表中有哪幾種量?”

  “當(dāng)時間是1小時,路程是多少?當(dāng)時間是2小時,路程又是多少?”

  “這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)“時間和路程是兩種相關(guān)聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?”

  教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴(kuò)大2倍,對應(yīng)的路程也擴(kuò)大2倍3時間擴(kuò)大3倍,對應(yīng)的路程也擴(kuò)大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應(yīng)的路程也縮小8倍;時間縮小7倍,對應(yīng)的路程也縮小7倍……時間縮小2倍,對應(yīng)的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時間的變化而變化的。時間擴(kuò)大路程也擴(kuò)大,時間縮小路程也縮小。它們擴(kuò)大、縮小的規(guī)律是怎么樣的呢?

  讓每一小組(8個小組)的同學(xué)選一組相對應(yīng)的數(shù)據(jù),計(jì)算出它們的比值。教師板書出來: =60. =60, =60…… 讓學(xué)生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

  然后教師指著 =60, =60 = 60……問:“比值60,實(shí)際上是火車的什么:你能將這些式子所表示的意義寫成一個關(guān)系式嗎?板書: =速度(—定)

  教師小結(jié):通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關(guān)聯(lián)的量。)路程和時間這兩種量的變化規(guī)律是什么呢?(路程和時間的比的比值(速度)總是一定的。)

  2.教學(xué)例2。

  出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價(jià)的表。

  讓學(xué)生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數(shù)擴(kuò)大,總價(jià)怎樣?米數(shù)縮小,總價(jià)怎樣?

  (3)相對應(yīng)的總價(jià)和米數(shù)的比各是多少?比值是多少?

  當(dāng)學(xué)生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……

  然后進(jìn)一步問:

  “這個比值實(shí)際上是什么?你能用一個關(guān)系式表.示它們的關(guān)系嗎?”板書: =單價(jià)(一定)

  教師小結(jié):通過剛才的思考和分析,我們知道總價(jià)和米數(shù)也是兩種相關(guān)聯(lián)的量,總價(jià)是隨著米數(shù)的變化而變化的,米數(shù)擴(kuò)大,總價(jià)也隨著擴(kuò)大;米數(shù)縮小,總價(jià)也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:總價(jià)和米數(shù)的比的比值總是一定的。

  3.抽象概括正比例的意義。

  教師:請同學(xué)們比較一下剛才這兩個例題,回答下面的問題;

  (1)都有幾種量?

  (2)這兩種量有沒有關(guān)系?

  (3)這兩種量的比值都是怎樣的?

  教師小結(jié):通過比較,我們看出上面兩個例題,有一些共同特點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的.比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。(板書出教科書上第’20頁的倒數(shù)第二段。)

  接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學(xué)生想一想:在例2中,有哪兩種相關(guān)聯(lián)的量:它們是不是成正比例的量?為什么?

  最后教師提出:如果我們用字母x,y表示兩種相關(guān)聯(lián)的量.用字母K表示它們的比值,你能將正比例關(guān)系用字母表示出來嗎?

  學(xué)生回答后,教師板書: =K(一定)

  4、教學(xué)例3。

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  教師引導(dǎo):

  “面粉的總重量和袋數(shù)是不是相關(guān)聯(lián)的量?”·

  “面粉的總重量和袋數(shù)有什么關(guān)系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例!

  5、鞏固練習(xí)。

  讓學(xué)生試做第21頁“做一做”中的題目。其中(3)要求學(xué)生說明這個比值所表示的意義,學(xué)生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。

  四、課堂練習(xí)

  完成練習(xí)六的第1—3題。

  第1題,做題前,讓學(xué)生想一想:成正比例的量要滿足哪幾個條件?然后讓學(xué)生算出各表中兩種相對應(yīng)的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關(guān)系式進(jìn)行判斷。第(3)小題,要問一問學(xué)生為什么正方形的邊長和面積不成比例。(因?yàn)橄鄬?yīng)的正方形的邊長和面積的比的比值不相等。)

  第2題,先讓學(xué)生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3題,可先讓同桌的同學(xué)互相舉例,然后再指名舉出成正比例的例子。

  《比例的意義》教案 6

  教學(xué)內(nèi)容:

  教材第99~102頁例1~例3。

  教學(xué)要求:

  1.使學(xué)生認(rèn)識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn)

  認(rèn)識反比例關(guān)系的意義。

  教學(xué)難點(diǎn):

  掌握成反比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、鋪墊孕伏:

  1.正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?

  判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

  2.下面哪兩種量成正比例關(guān)系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價(jià)和總價(jià)。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)

  二、自主探究:

  1.教學(xué)例2。

  出示例2某運(yùn)輸公司要運(yùn)一批300噸的貨物。讓學(xué)生計(jì)算并完成填表任務(wù)。

  每天運(yùn)的數(shù)量(噸)1020304050

  所需的天數(shù)

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學(xué)生口答討論的結(jié)果,得出:

  (1)每天運(yùn)的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運(yùn)的噸數(shù)的變化而變化。

  (2)每天運(yùn)的噸數(shù)縮小,需要的天數(shù)反而擴(kuò)大,每天運(yùn)的噸數(shù)擴(kuò)大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運(yùn)的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運(yùn)的噸數(shù)和天數(shù)的積一定)因?yàn)槊刻爝\(yùn)的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補(bǔ)充成:運(yùn)的總噸數(shù)一定時,每天運(yùn)的噸數(shù)和天數(shù)的'積一定)

  2.教學(xué)例1

  出示例1。

  請同學(xué)們按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例1,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,小組討論:長方形的面積比變,當(dāng)長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請同學(xué)們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。

  4.具體認(rèn)識。

  (1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,例2里的兩種量成反比例關(guān)系嗎?為什么?

  (2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

  (3)判斷。

  現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當(dāng)工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

  5.教學(xué)例3。

  出示例3,看書自學(xué),小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?

  三、鞏固練習(xí)

  用剛才我們說的判斷方法來做幾道題。

  1.做練一練。

  指名學(xué)生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)

  2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?

  一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做練習(xí)十二第1題。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?

  五、課堂作業(yè)

  練習(xí)十二第2~4題。

  《比例的意義》教案 7

  教學(xué)目標(biāo)

  知識目標(biāo):理解比例的意義。

  技能目標(biāo):能正確判斷兩個比是否能組成比例,培養(yǎng)學(xué)生抽象概括能力。

  情感目標(biāo):使學(xué)生初步感知事物間是相互聯(lián)系、變化發(fā)展的。

  教學(xué)重難點(diǎn)

  重點(diǎn):理解比例的意義。

  難點(diǎn):判斷兩個比能否組成比例。

  教學(xué)工具

  多媒體課件

  教學(xué)過程

  一、新課導(dǎo)入

  請同學(xué)們回憶一下比的知識,比的前項(xiàng)、后項(xiàng)和比值。

  二、教學(xué)過程

  1.比例的意義

  (1)出示P40例1

  操場上和教室里兩面國旗的長和寬的比值有什么關(guān)系?

  2.4∶1.6=3∶2

  60∶40=3∶2

  2.4∶1.6=60∶40

  象這樣表示兩個比相等的式子叫做比例。

  比例也可以寫成:=

  做一做

  1、下面那組中的兩個比可以組成比例?把組成的比例寫出來。

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) ∶和6∶4 (4)0.6∶0.2和∶

  答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

  (4)0.6∶0.2=3∶2 ∶ =3∶1

  所以,只有第一組可以組成比例為6∶10=9∶15

  2、用圖中4個數(shù)據(jù)可以組成多少比例?

  答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

  全課小結(jié)

  通過這節(jié)課,我們學(xué)到了什么知識?什么是比例?

  拓展延伸

  用8、12四個數(shù)分別作為比例的項(xiàng),你能組成幾個比例?

  課后小結(jié)

  通過這節(jié)課,我們學(xué)到了什么知識?什么是比例?

  課后習(xí)題

  一、填空

  1、( )叫做比例。

  2、兩個比的.( )相等,這兩個比就相等。

  3、把6×8=24×2改寫成四個比例。

  4、把7m=8n改寫成四個比例。

  5、根據(jù)8×9=3×24,寫出比例( )

  6、如果7a=6b,那么a:b=( ):( )。

  7、如果9a=5b,那么b:a=( ):( )。

  二、選擇

  1、下面的比中能與3∶8組成比例的是( )。

  A.3.5∶6 B.1.5∶4 C.6∶1.5

  2、甲數(shù)除乙數(shù)的商是1.8,那么甲數(shù)與乙數(shù)的比是( )。

  A.9:5 B.5:9 C.1:8

  3、下面的數(shù)中,能與6、9、10組成比例的是( )。

  A.7 B.5.4 C.1.5

  板書

  表示兩個比相等的式子叫做比例。

  《比例的意義》教案 8

  教學(xué)目標(biāo):

  1、學(xué)生根據(jù)具體情境教學(xué),結(jié)合實(shí)例認(rèn)識正比例,理解正比例的意義,正比例的意義教學(xué)設(shè)計(jì)。

  2、能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  3、結(jié)合豐富的事例,認(rèn)識正比例,體會數(shù)學(xué)源于生活,進(jìn)一步提高學(xué)習(xí)興趣。

  教學(xué)重點(diǎn):

  結(jié)合豐富的事例,認(rèn)識正比例。能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學(xué)難點(diǎn):

  能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學(xué)關(guān)鍵:

  理解成正比例的兩個量的意義。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  口答

  1、已知路程和時間,怎樣求速度?

  2、已知總價(jià)和數(shù)量,怎樣求單價(jià)?

  3、已知工作總量和工作時間,怎樣求工作效率?

  二、數(shù)學(xué)活動。

  在學(xué)活動的過程中,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,并樂于與人交流。

  活動一:在情境中感受兩種相關(guān)聯(lián)的量之間的變化規(guī)律。

  (一)情境一:

  課件出示:

  1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據(jù)你的觀察,把數(shù)據(jù)填在表中。

  2、填完表以后思考討論。正方形的面積與邊長的變化是否有關(guān)系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?

  3、小結(jié):正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。

  特點(diǎn)是:

 、賰煞N相關(guān)聯(lián)的量

 、谝环N量擴(kuò)大(或縮小)另一種量也擴(kuò)大(或縮小)

 、蹆煞N量中相對應(yīng)的兩個量的比的比值是一定的。

  4、正方形的面積與邊長的比是邊長,是一個不確定的值。

  學(xué)生在小組內(nèi)練說發(fā)現(xiàn)的規(guī)律,初步感知正比例的判定。

  (二)情境二:

  1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:

  2、請把下表填寫完整。

  3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時間的比值(速度)相同。

  (三)情境三:

  1、一些人買一種蘋果,購買蘋果的質(zhì)量和應(yīng)付的錢數(shù)如下。

  2、把表填寫完整。

  3、從表中發(fā)現(xiàn)了什么規(guī)律?應(yīng)付的錢數(shù)與質(zhì)量的比值(也就是單價(jià))相同。

  4、說說以上兩個例子有什么共同的特點(diǎn)。

  小結(jié):路程隨時間的變化而變化,路程與時間的比值相同;應(yīng)付的錢數(shù)隨購買蘋果的質(zhì)量的變化而變化,應(yīng)付的錢數(shù)與質(zhì)量的比值相同。

  5、正比例關(guān)系:觀察思考成正比例的量有什么特征?

  小結(jié):

  (1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是我們今天要學(xué)習(xí)的內(nèi)容。

  追問:判斷兩種相關(guān)聯(lián)的量成不成正比例的關(guān)鍵是什么?(比值是不是一定)

  (2)字母表達(dá)關(guān)系式。

  如果字母y和x分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系怎樣用字母表示出來?=k(一定)

  (3)質(zhì)疑。

  師:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的.兩種量必須具備哪些條件?

  三、鞏固練習(xí)

  (一)想一想:請生用自己的語言說一說。與同桌交流,再集體匯報(bào)

  1、正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?

  2、根據(jù)小明和爸爸的年齡變化情況

  把表填寫完整。父子的年齡成正比例嗎?為什么?

  (二):練一練。教師適度點(diǎn)撥引導(dǎo),強(qiáng)調(diào)正比例關(guān)系判斷的關(guān)鍵。先自己獨(dú)立完成,然后集體訂正,說理由。

  1、判斷下面各題中的兩個量,是否成正比例,并說明理由。

  (1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。

  (2)一個人的身高和年齡。

  (3)寬不變,長方形的周長與長。

  2、根據(jù)下表中平行四邊形的面積與高相對應(yīng)的數(shù)值,判斷當(dāng)?shù)资?厘米的時候,它們是是成正比例,并說明理由。

  3、買郵票的枚數(shù)與應(yīng)付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由

  4、畫一畫,你會有新的發(fā)現(xiàn)。

  彩帶每米4元,購買2米、3米…彩帶分別需要多少錢?

  ①填一填:(長度:米,價(jià)格:元)

 、诋嬕划,把上表中長度和價(jià)錢對應(yīng)的點(diǎn)描在坐標(biāo)紙上,再順次連接起來?窗l(fā)現(xiàn)了什么?

  板書:

  正比例的意義

  ①兩種相關(guān)聯(lián)的量

 、谝环N量擴(kuò)大(或縮小)另一種量也擴(kuò)大(或縮小)

 、蹆煞N量中相對應(yīng)的兩個量的比的比值是一定的

  路程÷時間=速度(一定)總價(jià)÷數(shù)量=單價(jià)(一定)

  =k(一定)

  《比例的意義》教案 9

  教學(xué)目標(biāo):

  1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2、培養(yǎng)學(xué)生概括能力和分析判斷能力。

  3、培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  教學(xué)重點(diǎn):

  成正比例的量的特征及其判斷方法。

  教學(xué)難點(diǎn):

  理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.

  教 法:

  啟發(fā)引導(dǎo)法

  學(xué) 法:

  自主探究法

  教 具:

  課件

  教學(xué)過程:

  一、定向?qū)W(xué)(5分)

  1、已知路程和時間,求速度

  2、已知總價(jià)和數(shù)量,求單價(jià)

  3、已知工作總量和工作時間,求工作效率

  4、導(dǎo)入課題

  今天我們來學(xué)習(xí)成正比例的`量。

  5、出示學(xué)習(xí)目標(biāo)

  1)理解正比例的意義。

  2)能根據(jù)正比例的意義判斷兩種量是不是成正比例。

  二、自主學(xué)習(xí)(8分)

  自學(xué)內(nèi)容:書上45頁例1

  自學(xué)時間:8分鐘

  自學(xué)方法:讀書法、自學(xué)法

  自學(xué)思考:

  1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?

  2、正比例關(guān)系式是什么?

 。1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。例如底面積一定,體積和高成正比例。

  (2)構(gòu)成正比例關(guān)系的兩種量,必須具備三個條件:一是必須是兩種相關(guān)聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定

 。3)如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  y/x=k(一定)

 。4)不計(jì)算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。

  2、歸類提升

  引導(dǎo)學(xué)生小結(jié)成正比例的量的意義和關(guān)系式。

  三、合作交流(5分)

  第46頁正比例圖像

  1、正比例圖像是什么樣子的?

  2、完成46頁做一做

  3、各組的b1同學(xué)上臺講解

  四、質(zhì)疑探究(5分)

  1、第49頁第1題

  2、第49頁第2題

  3、你還有什么問題?

  五、小結(jié)檢測(8分)

  1、什么是正比例關(guān)系?如何判斷是不是正比例關(guān)系?

  2、檢測

  1、49頁第3題。

  六、堂清作業(yè)(9分)

  練習(xí)九頁第4、5題。

  板書設(shè)計(jì):

  成正比例的量

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  關(guān)系式:

  y/x=k

  (一定)

  《比例的意義》教案 10

  教學(xué)內(nèi)容:

  教科書第22—24頁反比例的意義,練習(xí)六的第4—6題。

  教學(xué)目的:

  1.使學(xué)生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。

  2.使學(xué)生進(jìn)一步認(rèn)識事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。

  3.初步滲透函數(shù)思想。

  教具準(zhǔn)備:

  投影儀、投影片、小黑板。

  教學(xué)過程:

  一、復(fù)習(xí)

  1.讓學(xué)生說說什么是成正比例的量:

  2.用投影片出示下面的題:

  (1)下面各題中哪兩種量成正比例?為什么?

 、俟P記本單價(jià)一定,數(shù)量和總價(jià):

 、崞囆旭偹俣纫欢.行駛的路程和時間。

 、诠ぷ餍室欢.’工作時間和工作總量。

 、僖淮竺椎闹亓恳欢.吃了的和剩下的。

  (2)說出每小時加工零件數(shù)、加工時間和加工零件總數(shù)三者間的數(shù)量關(guān)系。在什么條件下,其中兩種量成正比例?

  二、導(dǎo)入新課

  教師:如果加工零件總數(shù)一定。每小時加工數(shù)和加工時間會成什么樣的變化.關(guān)系怎樣?就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。

  三、新課

  1.教學(xué)例4。

  出示例4;豐機(jī)械廠加工一批機(jī)器零件。每小時加工的數(shù)量和所需的加工時間如下表。

  讓學(xué)生觀察這個表,然后每四人一組討論下面的問題:

  (1)表中有哪兩種量?

  (2)所需的加工時間怎樣隨著每小時加工的個數(shù)變化?

  (3)每兩個相對應(yīng)的數(shù)的乘積各是多少?

  學(xué)生分組討論后集中發(fā)言。然后每個小組選代表回答上面的問題。隨著學(xué)生的回答,教師板書如下:每小時加工數(shù)加工時間

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,“這個積600。實(shí)際上是什么?”在“加工時間”后面板書:零件總數(shù)

  “積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)

  “每小時加工數(shù)、加工時間和零件總數(shù)這三種量有什么關(guān)系呢?”

  學(xué)生回答后,教師小結(jié):通過剛才的觀察分析.我門可以看出。表中每小時加工零件數(shù)和所需的加工時間是兩種相關(guān)聯(lián)的量。所需的加工時間是隨著每小時加工數(shù)量的變化而變化的,每小時加工的數(shù)量擴(kuò)大。所需的加工時間反而縮小3每小時加工的數(shù)量縮小,所需的加工的時間反而擴(kuò)大。它們擴(kuò)大、縮小的規(guī)律是:每小時加工的.零件的數(shù)量和所需的加工時間的積都等于600,即總是一定的:我們把這種關(guān)系寫成式子就是:每小時加工數(shù)×加工的時間=零件總數(shù)(一定)。

  2.教學(xué)例5。

  用小黑板出示例5用600頁紙裝訂成同樣的練習(xí)本,每本的頁數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請你先填寫下表。

  (1)理解題意,填寫裝訂本數(shù)。

  “誰能說說表中第一欄數(shù)據(jù)的意思?”(用600頁紙裝訂練習(xí)本,如果每本練習(xí)本15頁,可以裝訂40本。)

  “這40本是怎么計(jì)算出來的?”(用600÷15)

  “如果每本練習(xí)本是20頁,你能計(jì)算出可以裝訂多少這樣的練習(xí)本嗎?如果每本是25頁呢?……請你把計(jì)算出來的本數(shù)填在教科書第23頁的表中!苯處煱褜W(xué)生報(bào)出的數(shù)據(jù)填在黑板上的表中。

  (2)觀察分析表中兩種量的變化規(guī)律。

  讓學(xué)生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數(shù)裝訂的本數(shù))

  “裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化的?”隨著學(xué)生的回答,板書如下:每本的頁數(shù) 裝訂的本數(shù)

  15 40

  20 30

  25 24

  一’然后讓學(xué)生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。

  1、單價(jià)一定.數(shù)量和總價(jià)。

  2、路程一定,速度和時間。

  3、正方形的邊長和它的面積。

  4、時間一定,工效和工作總量。

  二、導(dǎo)入新課

  教師:我們在前兩節(jié)課分別學(xué)習(xí)了成正比例的量和成反比例的量。初步學(xué)會判斷兩種量是不是成正比例或反比例的關(guān)系,發(fā)現(xiàn)有些同學(xué)判斷時還不夠準(zhǔn)確。這節(jié)課我們要通過比較弄清成正比例的量和成反比例的量有什么相同點(diǎn)和不同點(diǎn)。

  板書課題:正比例和反比例的比較

  三、新課

  1.教學(xué)例7。

  出示例7的兩個表:

  讓學(xué)生觀察上面的兩個表,然后根據(jù)兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:

  在表1中: 在表2中:

  相關(guān)聯(lián)的量是路程和時間. 路程隨著相關(guān)聯(lián)的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化一定。因此,路程和時間 ,路程是一定的。因此,速成正比例關(guān)系。 度和時間成反比例關(guān)系

  然后提問:

  (1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據(jù)什么判斷路程和時間成正比例

  (2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據(jù)什么判斷速度和時間成反比例?

  教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關(guān)系?

  板書:速度×?xí)r間=路程

  =速度 =速度

  教師:當(dāng)速度一·定時,路程和時間成什么比例關(guān)系?

  教師:當(dāng)路程一定時,速度和時間成什么比例關(guān)系?

  教師:當(dāng)時間一定時。路程和速度成什么比例關(guān)系?

  2.比較正比例和反比例關(guān)系。

  教師:結(jié)合上面兩個例子,比較——下正比例關(guān)系和反比例關(guān)系,你能寫出它們的相同點(diǎn)和不同點(diǎn)嗎?試試看。組織討論,教師歸納并板書:

  四、鞏固練習(xí)

  1.做教科書第28頁“做一做”中的題目。

  讓學(xué)生自己填,并說一說為什么。

  2.做練習(xí)七的第1—2題。

  教師巡視,個別輔導(dǎo),最后訂正。

  五、小結(jié)

  教師:請同學(xué)們說說正比例和反比例關(guān)系有什么相同點(diǎn)和不同點(diǎn)?

  《比例的意義》教案 11

  一、教學(xué)目標(biāo)

  知識與技能目標(biāo):在具體情境中,理解比例的意義和基本性質(zhì),會應(yīng)用比例的意義和基本性質(zhì)正確判斷兩個比能否組成比例。

  過程與方法目標(biāo):在探索比例的意義和基本性質(zhì)的過程中發(fā)展推理能力。

  態(tài)度價(jià)值觀目標(biāo):通過自主學(xué)習(xí),經(jīng)歷探究的過程,體驗(yàn)成功的快樂。

  二、教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn): 理解比例的意義和基本性質(zhì)。

  難點(diǎn):判斷兩個比是否成比例。

  三、教學(xué)過程設(shè)計(jì)

  (一)創(chuàng)設(shè)情境,提出問題

  1. 復(fù)習(xí)導(dǎo)入:

  (1)什么叫做比?

  兩個數(shù)相除又叫做兩個數(shù)的比。

  (2)什么叫做比值?

  比的前項(xiàng)除以比的后項(xiàng)所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  談話:今天我們要學(xué)的知識也和比有著密切的關(guān)系。

  2、創(chuàng)設(shè)情境,提出問題。

  談話:同學(xué)們,你們知道青島都有哪些產(chǎn)品非常有名?(學(xué)生根據(jù)自己的了解回答)青島啤酒享譽(yù)世界各地,這節(jié)課,我們將一起去探索啤酒生產(chǎn)中的數(shù)學(xué)

  出示課件:這是一輛貨車正在運(yùn)輸啤酒的主要生產(chǎn)原料大麥芽。

  這是它兩天的運(yùn)輸情況:

  一輛貨車運(yùn)輸大麥芽情況

  第一天 第二天

  運(yùn)輸次數(shù) 2 4

  運(yùn)輸量(噸) 16 32

  根據(jù)這個表格,讓學(xué)生提出有關(guān)比的數(shù)學(xué)問題。同桌倆人,一個提問題,一個將問題的答案寫在本上,看哪對同桌合作得最好,提出的問題最多。

  談話:誰來交流?跟大家說一下你的問題是什么?

  學(xué)生可能出現(xiàn)以下的.問題:

  貨車第一天的運(yùn)輸量與運(yùn)輸次數(shù)的比是多少? (16 : 2)

  貨車第二天的運(yùn)輸量與運(yùn)輸次數(shù)的比是多少?(32 :4)

  貨車第二天的運(yùn)輸量與第一天運(yùn)輸量的比是多少?(32 :16)

  (師根據(jù)學(xué)生的回答,將答案一一貼或?qū)懹诤诎澹?/p>

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、認(rèn)識比例及各部分名稱。

  談話:學(xué)習(xí)數(shù)學(xué),我們不僅要善于提問,還要善于觀察,F(xiàn)在就請你觀察這兩個比(16 :2;32 :4)看能發(fā)現(xiàn)什么?(學(xué)生會發(fā)現(xiàn)比值相等)

  思考:這個比值所表示的實(shí)際意義是什么?(每次的運(yùn)輸量)

  既然它們的比值相等,那我們可以用什么符號將兩個比連接起來?

  學(xué)生用等號連接,并請學(xué)生把這個式子讀一下。

  試一試:剩下的這些比中,哪兩個也能用等于號連接?在你的練習(xí)本上寫寫看。(學(xué)生獨(dú)立完成)

  介紹:像這樣表示兩個比相等的式子,數(shù)學(xué)上就把它叫做比例。我們知道,比有前項(xiàng)、后項(xiàng),比例的各部分也有自己的名字。組成比例的四個數(shù)叫做比例的項(xiàng),像16、4位于兩端的兩項(xiàng)叫做比例的外項(xiàng),2、32位于中間的兩項(xiàng)叫做比例的內(nèi)項(xiàng)。比例,也可以寫成分?jǐn)?shù)形式。

  學(xué)生先把2 :16=4 :32這個比例寫成分?jǐn)?shù)形式,再同桌倆交流它的內(nèi)項(xiàng)外項(xiàng)分別是誰。

  自學(xué)提示:同學(xué)們表現(xiàn)得都特別棒,現(xiàn)在請你看課本自主練習(xí)第1題,能否根據(jù)剛才所學(xué)知識解決。(學(xué)生獨(dú)立完成)

  2、比和比例有什么區(qū)別?

  比

  4︰6

  比例

  2︰3=4︰6

  3、判斷下面兩個比能否組成比例?

  6∶9 和 9∶12

  總結(jié)方法:判斷兩個比能不能組成比例,要看它們的比值是否相等。

  4、談話引入:剛才,你們是根據(jù)比例的意義先求出比值再判斷兩個比能否組成比例。我不是這樣想的,可能很快就判斷好了,想知道其中的秘密嗎?其實(shí)秘密就藏在比例的兩個內(nèi)項(xiàng)和兩個外項(xiàng)之中,它們兩者之間可是存在著一種奇妙的關(guān)系,你想揭穿這個秘密嗎?

  那就請你以16:2=32:4為例,通過看一看,想一想,算一算等方法,試試能不能發(fā)現(xiàn)這個關(guān)系!

  5、學(xué)生先獨(dú)立思考,再小組交流,探究規(guī)律。

  出示研究方案:

 、儆^察比例的兩個內(nèi)項(xiàng)與兩個外項(xiàng),用算一算的方法,找同學(xué)說一說,你發(fā)現(xiàn)了什么。

 、谑遣皇敲恳粋比例的兩個外項(xiàng)與兩個內(nèi)項(xiàng)都具有這種規(guī)律,請你再舉出這樣的例子來。

  ③通過以上研究,你發(fā)現(xiàn)了什么?

  6、全班交流。

 。1)哪個小組愿意將你們的發(fā)現(xiàn)與大家分享?

 。2)還有其他發(fā)現(xiàn)嗎?

  (3)你們組所發(fā)現(xiàn)的是不是個偶然現(xiàn)象呢?我們最好是怎么辦?

  7、驗(yàn)證發(fā)現(xiàn),共享成功。

  師:對,舉例驗(yàn)證,這可是一種非常好的數(shù)學(xué)方法。那現(xiàn)在,我們可以利用黑板上的比例,也可以自己組一個新的比例,驗(yàn)證看看,是不是所有的比例都是兩個外項(xiàng)的積等于兩個內(nèi)項(xiàng)的積。(學(xué)生獨(dú)立驗(yàn)證)

  8、利用一個比例通過課件形象的展示兩個外項(xiàng)的積等于兩個內(nèi)項(xiàng)的積。

  9、小結(jié):不錯,看來同學(xué)們很會觀察,很會思考,很會驗(yàn)證,自己發(fā)現(xiàn)了比例的一條規(guī)律。也就是,在比例里,兩個外項(xiàng)的積等于兩個內(nèi)項(xiàng)的積。數(shù)學(xué)上我們把這條規(guī)律,叫做比例的基本性質(zhì)。這也是我們在小學(xué)階段,在繼分?jǐn)?shù)、比的基本性質(zhì)之后學(xué)習(xí)的第三個基本性質(zhì)。運(yùn)用它,我們可以解決許多數(shù)學(xué)問題。

  10、比例的基本性質(zhì)的應(yīng)用:

  應(yīng)用比例的基本性質(zhì),判斷下面兩個比能不能組成比例.

  6∶3 和 8∶5

  方法:a、先假設(shè)這兩個比能組成比例

  b、說出寫出的比例的內(nèi)項(xiàng)和外項(xiàng)分別是幾,再分別算出外項(xiàng)和內(nèi)項(xiàng)的積。

  c、根據(jù)比例的基本性質(zhì)判斷組成的比例是否正確。

 。ǘ┳灾骶毩(xí),拓展提升

  1、判斷下面每組中兩個比能否組成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  讓學(xué)生根據(jù)比例的意義進(jìn)行判斷,教師結(jié)合回答板書:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、連線:自主練習(xí)第3題。

  3、填空:自主練習(xí)第6題。

  4、自主練習(xí)第10題:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能寫幾個寫幾個)。

  2、3、4 和 6

  因?yàn)?2 × 6 = 3 × 4 所以這四個數(shù)可以組成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  練習(xí)時,給學(xué)生充足的時間讓學(xué)生獨(dú)立完成,然后交流溝通。

 。ㄈ┗仡櫩偨Y(jié)

  在這節(jié)課中你又有什么新的收獲?

  《比例的意義》教案 12

  一、知識與技能

  1.從現(xiàn)實(shí)情境和已有的知識、經(jīng)驗(yàn)出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.

  三、情感態(tài)度與價(jià)值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

  2、通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.

  教學(xué)重點(diǎn):

  理解和領(lǐng)會反比例函數(shù)的概念.

  教學(xué)難點(diǎn):

  領(lǐng)悟反比例的概念.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  活動1

  問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的`函數(shù)的表達(dá)形式.

  教師組織學(xué)生討論,提問學(xué)生,師生互動.

  在此活動中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

 、倌芊穹e極主動地合作交流.

 、谀芊裼谜Z言說明兩個變量間的關(guān)系.

  ③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?

 。1)一個游泳池的容積為2000m3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

 。3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.

  教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

  (1)能否從現(xiàn)實(shí)情境中抽象出兩個變量的函數(shù)關(guān)系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.

  分析及解答:

  概念:如果兩個變量x,y之間的關(guān)系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點(diǎn)關(guān)注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

  ②學(xué)生能否順利抽象反比例函數(shù)的模型;

  ③學(xué)生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當(dāng)x=2時,y=6

  (1)寫出y與x的函數(shù)關(guān)系式:

  (2)求當(dāng)x=4時,y的值.

  師生行為:

  學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點(diǎn)關(guān)注:

 、賹W(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設(shè),因?yàn)閤=2時,y=6,所以有

  解得k=12

  因此

 。2)把x=4代入,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當(dāng)x=3時,y=8.

  (1)寫出y與x之間的函數(shù)關(guān)系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個反比例函數(shù)的表達(dá)式;

  (2)根據(jù)函數(shù)表達(dá)式完成上表.

  學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.

  四、課時小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識到理發(fā)認(rèn)識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.

  《比例的意義》教案 13

  素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點(diǎn)

  1.使學(xué)生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  2.培養(yǎng)學(xué)生抽象概括能力和分析判斷能力。

 。ㄈ┑掠凉B透點(diǎn)

  1.通過引導(dǎo)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生進(jìn)一步受到辯證唯物主義觀點(diǎn)的啟蒙教育。

  2.進(jìn)一步滲透函數(shù)思想。

  教學(xué)重點(diǎn):

  使學(xué)生理解正比例的意義。

  教學(xué)難點(diǎn):

  引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,即它們相對應(yīng)的數(shù)的比值一定,從而概括出正比例關(guān)系的概念。

  教具學(xué)具準(zhǔn)備:

  投影儀、投影片、小黑板。

  教學(xué)步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學(xué)回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價(jià)和數(shù)量,怎樣求單價(jià)?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導(dǎo)入新課:這些都是我們已經(jīng)學(xué)過的常見的數(shù)量關(guān)系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關(guān)系中的一些特征。

  2.教學(xué)例1

 。1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

  (2)出示下表,并根據(jù)上述內(nèi)容填表。

  一列火車行駛的時間和所行的路程如下表

 。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學(xué)生交流時,使之明確。

 、俦碇杏袝r間和路程兩種量。

 、诋(dāng)時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。

  教師點(diǎn)撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

 、廴绻麑W(xué)生沒有問題,教師提示:請每位同學(xué)任選一組相對應(yīng)的數(shù)據(jù),計(jì)算出路程與時間的比的比值。

  教師問:根據(jù)計(jì)算,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生得出:相對應(yīng)的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應(yīng)的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學(xué)上叫做“一定”。(板書:相對應(yīng)的兩個數(shù)的比值一定)

  ④比值60,實(shí)際就是火車的速度。用式子表示它們的關(guān)系就是:

  (4)教師小結(jié):

  剛才同學(xué)們通過填表、交流,我們知道時間和路程是兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化。時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。

  3.教學(xué)例2

  (1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價(jià)的表。

 。2)觀察上表,引導(dǎo)學(xué)生明確:

  ①表中有數(shù)量(米數(shù))和總價(jià)這兩種量,它們是兩種相關(guān)聯(lián)的量。

 、诳們r(jià)隨米數(shù)的變化情況是:

  米數(shù)擴(kuò)大,總價(jià)隨著擴(kuò)大;米數(shù)縮小,總價(jià)也隨著縮小。

 、巯鄬(yīng)的總價(jià)和米數(shù)的比的比值是一定的。

 、鼙戎3.1,實(shí)際就是這種花布的單價(jià)。用式子表示它們的關(guān)系就是:

 。3)師生小結(jié):通過剛才的觀察和分析,我們知道總價(jià)和米數(shù)也是兩種什么樣的量?(兩種相關(guān)聯(lián)的量)為什么?(總價(jià)隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴(kuò)大,總價(jià)隨著擴(kuò)大;米數(shù)縮小,總價(jià)隨著縮小。)它們擴(kuò)大、縮小的規(guī)律是怎樣的?(總價(jià)和米數(shù)的比的比值總是一定的。)

  4.抽象概括正比例的意義。

 。1)比較例1、例2,思考并討論,這兩個例子有什么共同點(diǎn)?

 。2)學(xué)生初步交流時引導(dǎo)學(xué)生明確:

  ①例1中有路程和時間兩種量;例2中有米數(shù)和總價(jià)兩種量。即它們都有兩種相關(guān)聯(lián)的量;

 、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價(jià)也隨著變化。

  教師點(diǎn)撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時間的比的比值一定:例2中總價(jià)與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。▽W(xué)生答不出來時,教師引導(dǎo)、點(diǎn)撥,并補(bǔ)充板書:兩種量中)

 。3)引導(dǎo)學(xué)生抽象概括出兩例的共同點(diǎn):

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。4)教師指明:兩種相關(guān)聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 。ㄑa(bǔ)充板書:如果這成正比例的量正比例關(guān)系)

  這就是我們這節(jié)課學(xué)習(xí)的“正比例的意義”(板書課題)

 。5)看書19、20頁的內(nèi)容,進(jìn)一步理解正比例的`意義。

 。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

 。7)想一想:在例2中,有哪兩種相關(guān)聯(lián)的量?它們是不是成正比例的量?為什么?

  (8)教師提出:如果字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  (9)教師提出:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  5.教學(xué)例3

  (1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

 。2)根據(jù)正比例的意義,由學(xué)生討論解答。

 。3)匯報(bào)判斷結(jié)果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關(guān)聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習(xí)

  讓學(xué)生試做第21頁的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習(xí)三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應(yīng)數(shù)的比的比值。如果相等,列關(guān)系式判斷。第(3)題不成比例,訂正時要學(xué)生說明為什么?

  2.完成練習(xí)三第2題的(1)-(9)

  先讓學(xué)生自己判斷,再訂正。

  四、全課小結(jié)(師生共同進(jìn)行)

  通過這節(jié)課的學(xué)習(xí),你都知道了什么?怎樣判斷兩種量是否成正比例?

  《比例的意義》教案 14

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握反比例函數(shù)的概念

  2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式

  3.能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想

  二、重、難點(diǎn)

  1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式

  2.難點(diǎn):理解反比例函數(shù)的概念

  三、例題的意圖分析

  教材第46頁的`思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。

  教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會函數(shù)所蘊(yùn)含的變化與對應(yīng)的思想,特別是函數(shù)與自變量之間的單值對應(yīng)關(guān)系。

  補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。

  《比例的意義》教案 15

  教學(xué)內(nèi)容:

  教材第30~31頁比例的意義和基本性質(zhì),練習(xí)六第1~5題。

  教學(xué)要求:

  使學(xué)生理解比例的意義和基本性質(zhì),能用比例的意義或性質(zhì)判斷兩個比成不成比例;通過教學(xué)培養(yǎng)學(xué)生初步的綜合、概括能力。

  教學(xué)重點(diǎn):

  理解比例的意義和基本性質(zhì)。

  教學(xué)難點(diǎn):

  用比例的意義或性質(zhì)判斷兩個比成不成比例。

  教學(xué)理念:

  以學(xué)生為主體,把較多的時間和空間留給學(xué)生探索、交流、概括。

  教具、學(xué)具準(zhǔn)備:

  小黑板,教學(xué)課件

  教學(xué)步驟

  一、復(fù)習(xí)鋪墊

  1、什么叫做兩個數(shù)的比?請你說出兩個比。(教師板書)

  2、什么是比的比值?上面兩個比的比值是多少?

  3、引入新課。

  我們已經(jīng)認(rèn)識了比,知道怎樣求比值。今天就根據(jù)比和比值來學(xué)習(xí)比例,并且認(rèn)識比例的基本性質(zhì)。(板書課題)

  二、導(dǎo)入新課

  1、教學(xué)比例的意義。

  讓學(xué)生算出下面各比的比值,再比較每組里兩個比的比值有什么關(guān)系。(指名板演)

  (1) 3 :5 24 :40

  (2) :7.5 :3

  追問:比值相等,說明每組里兩個比怎樣?

  指出:表示兩個比相等的式子叫做比例。

  說一說,上面兩個等式表示的是怎樣的式子?

  2.下面兩個比之間的哪些○里能填“=”,為什么?

  1 :2○3 :6 0.5 :0.2○5 :2

  1.5 :3○15 :3:2○:1

  提問:填了等號后的式子是什么? 1.5 :3和15 :3為什么不能組成比例?要判斷兩個比能不能組成比例,可以看它們的什么?指出:要判斷兩個比是不是相等,可以看比值是不是相等;也可以把兩個比化簡后看是不是相同的兩個比。

  3、教學(xué)例1。

  出示例1,讓學(xué)生先寫出兩次買練習(xí)本的.錢數(shù)和本數(shù)的比。提問:怎樣判斷這兩個比能不能組成比例?讓學(xué)生判斷并寫出比例。提問:能不能組成比例?(板書比例式)為什么?強(qiáng)調(diào):只有兩個比值相等的比才能組成比例。

  讓學(xué)生根據(jù)比例的意義,在( )里填上適當(dāng)?shù)臄?shù)。

  3 :6=5 :( ) 0.8 :( )=1 :

  4、教學(xué)比例的基本性質(zhì)。

  向?qū)W生說明比例各部分的名稱。

  讓學(xué)生看開始組成的兩個比例,說一說其中的內(nèi)項(xiàng)和外項(xiàng)。讓學(xué)生計(jì)算上面比例里兩個外項(xiàng)的積和兩個內(nèi)項(xiàng)的積,并要求觀察,從中發(fā)現(xiàn)什么。

  5、判斷能否組成比例。

  出示“3.6 :1.8和0.5 :0.25”。讓學(xué)生自己根據(jù)比例的基本性質(zhì)判斷,如果能組成比例就寫出這個比例式。提問:2.6 :1.8和0.5 :0.25能組成比例嗎?

  強(qiáng)調(diào)指出:根據(jù)比例的基本性質(zhì),也可以判斷兩個比能不能組成比例,判斷時可以先把兩個比看成是比例。如果兩個外項(xiàng)的積等于兩個內(nèi)項(xiàng)的積,兩個比就能組成比例;如果不相等,就不能組成比例。

  如果學(xué)生有困難,啟發(fā)用比值相等的方法推算。填寫以后,學(xué)生回答:為什么填這個數(shù)?

  讓學(xué)生口答結(jié)果。提問:從上面的計(jì)算里,你發(fā)現(xiàn)了什么,出示比例的基本性質(zhì),并讓學(xué)生說一說。如果把比例寫成分?jǐn)?shù)形式,請你說一說外項(xiàng)和內(nèi)項(xiàng)。提問:在這個比例里交叉相乘的積有什么關(guān)系?追問:為什么交叉相乘的積相等?

  三、鞏固練習(xí)

  1、提問:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎樣判斷兩個比能不能組成比例?

  2、完成“練一練”。

  指名4人板演.集體訂正.說說是怎樣判斷的?

  3、做練習(xí)六第1題。

  讓學(xué)生做在練習(xí)本上。如果能組成比例就再寫出比例。提問練習(xí)情況并板書,讓學(xué)生說明“為什么”。

  4、做練習(xí)六第2題。

  讓學(xué)生判斷,在練習(xí)本上寫出來。提問:哪一個比和:4組成比例?為什么,(比值相等,或化簡后兩個比相同)

  5、完成練習(xí)六第3題。

  學(xué)生先觀察、計(jì)算,然后口答,說明理由。

  四、全課小結(jié)

  這堂課學(xué)習(xí)了什么內(nèi)容?什么叫做比例?比例的基本性質(zhì)是什么?可以怎樣判斷兩個比能不能組成比例?

  五、布置作業(yè)

  練習(xí)六第4、5題。

【《比例的意義》教案】相關(guān)文章:

《比例的意義》教學(xué)實(shí)錄_《比例的意義》優(yōu)秀教案比例的意義優(yōu)質(zhì)教案12-06

《比例的意義》教案12-02

《比例的意義》教案09-30

【薦】《比例的意義》教案12-16

【精】《比例的意義》教案12-22

《比例的意義》教案【精】12-22

【熱】《比例的意義》教案12-22

【推薦】《比例的意義》教案12-09

【熱門】《比例的意義》教案12-23

《比例的意義》教案【熱】12-22