亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

反比例的意義教案

時間:2024-04-22 14:32:51 意義 我要投稿

反比例的意義教案

  在教學工作者實際的教學活動中,可能需要進行教案編寫工作,借助教案可以更好地組織教學活動。那要怎么寫好教案呢?下面是小編收集整理的反比例的意義教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

反比例的意義教案

反比例的意義教案1

  教學目標

  1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.

  教學重難點

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學過程

  一、導入新課

  (一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?

  (二)教師提問

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?

  教師板書:兩種相關聯(lián)的量

 。ㄈ┙處熣勗

  在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和

  數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?

  二、新授教學

 。ㄒ唬┏烧壤牧

  例1.一列火車行駛的時間和所行的路程如下表:

  時間(時):路程(千米)

  1 :90

  2 :180

  3 :270

  4 :360

  5 :450

  6 :540

  7 :630

  8 :720

  1.寫出路程和時間的比并計算比值.

 。1) 2表示什么?180呢?比值呢?

  (2) 這個比值表示什么意義?

 。3) 360比5可以嗎?為什么?

  2.思考

 。1)180千米對應的時間是多少?4小時對應的'路程又是多少?

 。2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時間、路程、速度

 。3)速度是怎樣得到的?

  教師板書:

 。4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?

 。5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.

  3.小結:有什么規(guī)律?

反比例的意義教案2

  1、成正比例的量

  教學內容:成正比例的量

  教學目標:

  1.使學生理解正比例的意義,會正確判斷成正比例的量。

  2.使學生了解表示成正比例的量的圖像特征,并能根據圖像解決有關簡單問題。

  教學重點:正比例的意義。

  教學難點:正確判斷兩個量是否成正比例的關系。

  教學過程:

  一揭示課題

  1.在現(xiàn)實生活中,我們常常遇到兩種相關聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的此導下,學生會舉出一些簡單的例子,如:

 。1)班級人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

 。2)送來的牛奶包數(shù)多了,牛奶的總質量也多了;包數(shù)少了,總質量也少了。

 。3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。

 。4)排隊時,每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  2.這種變化的量有什么規(guī)律?存在什么關系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量

  二探索新知

  1.教學例1

 。1)出示例題情境圖。

  問:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

  (2)出示表格。

  高度/㎝24681012

  體積/㎝350100150200250300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。

  板書:

  教師:體積與高度的比值一定。

 。2)說明正比例的意義。

 、僭谶@一基礎上,教師明確說明正比例的意義。

  因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。

  ②學生讀一讀,說一說你是怎么理解正比例關系的。

  要求學生把握三個要素:

  第一,兩種相關聯(lián)的量;

  第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。

  第三,兩個量的比值一定。

 。3)用字母表示。

  如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:

 。4)想一想:

  師:生活中還有哪些成正比例的量?

  學生舉例說明。如:

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質量一定,牛奶袋數(shù)和總質量成正比例。

  衣服的單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。

  地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。

  2.教學例2。

 。1)出示表格(見書)

  (2)依據下表中的數(shù)據描點。(見書)

 。3)從圖中你發(fā)現(xiàn)了什么?

  這些點都在同一條直線上。

 。4)看圖回答問題。

  ①如果杯中水的高度是7㎝,那么水的體積是多少?

  生:175㎝3。

 、隗w積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

 、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對應的.點是否在直線上?

  生:水的體積是350㎝3,相對應的點一定在這條直線上。

 。5)你還能提出什么問題?有什么體會?

  通過交流使學生了解成正比例量的圖像特往。

  3.做一做。

  過程要求:

 。1)讀一讀表中的數(shù)據,寫出幾組路程和時間的比,說一說比值表示什么?

  比值表示每小時行駛多少千米。

  (2)表中的路程和時間成正比例嗎?為什么?

  成正比例。理由:

 、俾烦屉S著時間的變化而變化;

  ②時間增加,路程也增加,時間減少,路程也隨著減少;

 、鄯N程和時間的比值(速度)一定。

 。3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。

  (4)行駛120KM大約要用多少時間?

  (5)你還能提出什么問題?

  4.課堂小結

  說一說成正比例關系的量的變化特征。

  三鞏固練習

  完成課文練習七第1~5題。

  2、成反比例的量

  教學內容:成反比例的量

  教學目標:

  1.經歷探索兩種相關聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。

  2.根據反比例的意義,正確判斷兩種量是否成反比例。

  教學重點:反比例的意義。

  教學難點:正確判斷兩種量是否成反比例。

  教學過程:

  一導入新課

  1.讓學生說一說成正比例的兩種量的變化規(guī)律。

  回答要點:

  (1)兩種相關聯(lián)的量;

 。2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;

 。3)兩個量的比值一定。

  2.舉例說明。

  如:每袋大米質量相同,大米的袋數(shù)與總質量成正比例。

  理由:

 。1)每袋大米質量一定,大米的總質量隨著袋數(shù)的變化而變化;

  (2)大米的袋數(shù)增加,大米的總質量也相應增加,大米的袋數(shù)

  減少,大米的總質量也相應減少;

 。3)總質量與袋數(shù)的比值一定。

  所以,大米的袋數(shù)與總質量成正比例。

  板書:

  3.揭示課題。

  今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?

  板書課題:成反比例的量[ 內 容 結 束 ]

反比例的意義教案3

  教學要求:

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據反比例的意義判斷兩種量成不成反比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:

  認識反比例關系的意義。

  教學難點:

  掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、鋪墊孕伏:

  1.正比例關系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例1某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務。

  每天運的數(shù)量(噸) 10 20 30 40 50

  所需的天數(shù) 30 15 10 7.5

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答 討論結果得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的`量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是300。提問:這里的300是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例2

  出示例2

  請同學們按照剛才學習例1的方法,自己學習例2,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,小組討論:長方形的面積不變,當長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關聯(lián)的量,它們是什么關系的量呢?說明:像例1、例2里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用xy=k(一定)來表示。

  4.具體認識。

  (1)提問:例1里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,

  例2里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?

  (3) 判斷。

  現(xiàn)在回過來看開始寫的關系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,那它們就是成反比例的量,相互之間的關系就是反比例關系。

反比例的意義教案4

  教學內容:

  教材第4~5頁例2、例3和練一練及練習一。

  教學要求:

  1.使學生理解和掌握圓柱體表面積的計算方法,能根據實際情況正確地進行計算,培養(yǎng)學生解決簡單的實際問題的能力。讓學生認識取近似值的進一法。

  2.進一步培養(yǎng)學生觀察、分析和推理等思維能力,發(fā)展學生的空間觀念。

  教具學具準備:

  教師準備一個圓柱模型(表面要有可揭下各個部分的一層紙);學生準備一個圓柱體。

  教學重點:

  掌握圓柱側面積的計算方法。

  教學難點:

  能根據實際情況正確地進行計算。

  教學過程:

  一、鋪墊孕伏:

  1.復習圓柱的特征。提問:圓柱有什么特征?

  2.計算下面圓柱的側面積(口頭列式):

 。1)底面周長4.2厘米,高2厘米。

  (2)底面直徑3厘米,高4厘米。

  (3)底面半徑1厘米,高3.5厘米。

  3.提問:圓柱的一個底面面積怎樣計算?

  4.引入新課。

  我們已經會計算圓柱的`側面積,那么怎樣計算圓柱的表面積呢?這節(jié)課就學習圓柱的表面積計算,(板書課題)

  二、自主研究:

  1.認識表面積計算方法。

 。1)請同學們拿出圓柱來看一看,想一想圓柱的表面包括哪幾個部分,然后告訴大家。指名學生拿出圓柱,邊指邊說明它的表面包括哪幾個部分。

 。2)教師演示。

  出示教具,說明把表面全部展開,看一看得到什么圖形,和大家說的對不對。揭下圓柱表面的紙,貼在黑板上,再與圓柱對比說明各個部分,明確圓柱表面包括一個側面和兩個相等的圓。

 。3)得出公式。

  請同學們看著表面展開的圖形說一說,圓柱的表面積應該怎樣計算?(板書:圓柱的表面積:側面積+兩個底面積)追問:圓柱的側面積怎樣算?圓柱的一個底面積怎樣算?

  2.教學例2。

  出示例2,學生讀題。提問:這道題分哪幾步來算?你們會做嗎?指名一人板演,其余學生做在練習本上。集體訂正,讓學生說說每一步的具體含義,是怎樣算的。

  3.組織練習。

  做練一練。指名兩人板演,其余學生做在練習本上。集體訂正,說說這兩題計算時有什么不同的地方,為什么?指出:計算圓柱的表面積,要注意題里的條件,正確列出算式計算。

  4.教學例3。

  出示例3,學生讀題。提問:這道題實際是求什么?這里求表面積與例2有什么不同,為什么?(只要用側面積加一個底面積)指名學生板演,其余學生做在練習本上。集體訂正,追問為什么只加一個底面積。

  5.組織練習。

 。1)第七頁第四題

 。2)先小組合作討論,再書面練習,然后集體訂正。

反比例的意義教案5

  教學目標

  1.使學生理解,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.

  教學重點

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學難點

  理解正反比例的意義,掌握正反比例的變化的規(guī)律.

  教學過程

  一、導入新課

 。ㄒ唬┳蛱炖蠋熧I了一些蘋果,吃了一部分,你能想到什么?

 。ǘ┙處熖釂

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?

  教師板書:兩種相關聯(lián)的量

  (三)教師談話

  在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和

  數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?

  二、新授教學

  (一)成正比例的量

  例1.一列火車行駛的時間和所行的路程如下表:

時間(時)




1




2




3




4




5




6




7




8




……




路程(千米)




90




180




270




360




450




540




630




720




……




  1.寫出路程和時間的比并計算比值.

 。1)

 。2) 2表示什么?180呢?比值呢?

 。3) 這個比值表示什么意義?

  (4) 360比5可以嗎?為什么?

  2.思考

  (1)180千米對應的時間是多少?4小時對應的路程又是多少?

  (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時間、路程、速度

  (3)速度是怎樣得到的?

  教師板書:

 。4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?

 。5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.

  3.小結:有什么規(guī)律?

  教師板書:商不變

  (二)成反比例的量

  1.華豐機械廠加工一批機器零件,每小時加工的數(shù)量和所需的加工時間如下表.

工效(個)




10




20




30




40




50




60




……
時間(時)

60




30




20




15




12




10




……




  2.教師提問

 。1)計算工效和時間的乘積.

 。2)這一組題中涉及了幾種量?誰與誰是相關聯(lián)的量?

 。3)請你舉例說明誰與誰是相對應的兩個數(shù)?

 。4)在這一組題中兩種相關聯(lián)的量是如何變化的?(舉例說明)

  3.小結:有什么規(guī)律?(板書:積不變)

  (三)不成比例的量

  1.出示表格

運走的噸數(shù)




10




20




30




40




剩下的噸數(shù)




90




80




70




60




總噸數(shù)(和不變)




100




100




100




100




  2.教師提問

  (1)總噸數(shù)是怎樣得到的.?

 。2)誰與誰是兩種相關聯(lián)的量?

 。3)它們又是怎樣變化的?變化的規(guī)律是什么?

  運走的噸數(shù)少,剩下的噸數(shù)多;運走的噸數(shù)多,剩下的噸數(shù)少;總和不變

  (四)結合三組題觀察、討論、總結變化規(guī)律.

  討論題:

  1.這三組題每組題中誰與誰是兩種相關聯(lián)的量?

  2.在變化過程當中,它們的異同點是什么?

  共同點:都有兩種相關聯(lián)的量,一種量變化,另一量也隨著變化

  不同點:第一組商不變,第二組積不變,第三組和不變.

  總結:

  3.分別概括

  4.強調第三組題中兩種相關聯(lián)的量叫做不成比例

  5.教師提問

 。1)兩種量成正比例必須具備什么條件?

 。2)兩種量成反比例必須具備什么條件?

 。ㄎ澹┳帜戈P系式

  三、鞏固練習

  判斷下面各題是否成比例?成什么比例?

  1.一種圓珠筆

總價(元)




1。2




2。4




3。6




4。8




6




7。2




支數(shù)




1




2




3




4




5




6




單價(元)




1




2




4




5




10




支數(shù)




100




50




25




20




10




 。1)表中有哪兩種相關聯(lián)的量?

  (2)說出幾組這兩種量中相對應的兩個數(shù)的比

 。3)每組等式說明了什么?

 。4)兩種相關的量是否成比例?成什么比例?

  2.當速度一定,時間路程成什么比例?

  當時間一定,路程和速度成什么比例?

  當路程一定,速度和時間成什么比例?

  3.長方形的面一定,長和寬

  4.修一條路,已修的米數(shù)和剩下的米數(shù).

  四、課堂總結

  今天這節(jié)課我們初步了解了正反比例的意義,并能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對比,使我們進一步認識到,要判斷兩種相關聯(lián)的量是成正比例關系還是反比例的關系,要抓住兩種相關聯(lián)的量的變化規(guī)律,這是本質.

  五、課后作業(yè)

 。ㄒ唬┡袛嘞旅婷款}中的兩種量是不是成正比例,并說明理由.

  1.蘋果的單價一定,購買蘋果的數(shù)量和總價.

  2.輪船行駛的速度一定,行駛的路程和時間.

  3.每小時織布米數(shù)一定,織布總米數(shù)和時間.

  4.長方形的寬一定,它的面積和長.

 。ǘ┡袛嘞旅婷款}中的兩種量是不是成反比例,并說明理由.

  1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).

  2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).

  3.李叔叔從家到工廠,騎自行車的速度和所需時間.

  4.華容做12道數(shù)學題,做完的題和沒有做的題.

  六、板書設計

反比例的意義教案6

  【學習目標】

  1、經歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。

  2、理解反比例函數(shù)的意義,根據題目條件會求對應量的值,能用待定系數(shù)法求反比例函數(shù)關系。

  3、讓學生經歷在實際問題中探索數(shù)量關系的過程,養(yǎng)成用數(shù)學思維方式解決實際問題的習慣,體會數(shù)學在解決實際問題中的作用。

  【學習重點】

  理解反比例函數(shù)的意義,確定反比例函數(shù)的解析式。

  【學習難點】

  反比例函數(shù)的解析式的確定。

  【學法指導】

  自主、合作、探究

  教學互動設計

  【自主學習,基礎過關】

  一、自主學習:

  (一)復習鞏固

  1.在一個變化的過程中,如果有兩個變量x和y,當x在其取值范圍內任意取一個值時,y,則稱x為,y叫x的.

  2.一次函數(shù)的解析式是:;當時,稱為正比例函數(shù).

  3.一條直線經過點(2,3)、(4,7),求該直線的解析式.

  以上這種求函數(shù)解析式的方法叫:

  (二)自主探究

  提出問題:下列問題中,變量間的對應關?可用怎樣的函數(shù)關系式表示?

 

  1.如圖K-3-8,已知反比例函數(shù)的'圖象經過三個點A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

  (1)當y1-y2=4時,求m的值;

  (2)過點B,C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若△PBD的面積是8,請寫出點P的坐標(不需要寫解答過程).

  26.1.2反比例函數(shù)的圖象和性質:課文練習

  1.下面關于反比例函數(shù)y=-3x與y=3x的說法中,不正確的是(  )

  A.其中一個函數(shù)的圖象可由另一個函數(shù)的圖象沿x軸或y軸翻折“復印”得到[

  B.它們的圖象都是軸對稱圖形

  C.它們的圖象都是中心對稱圖形

  D.當x>0時,兩個函數(shù)的函數(shù)值都隨自變量的增大而增大

反比例的意義教案7

  教學內容:教科書第22—24頁反比例的意義,練習六的第4—6題。

  教學目的:

  1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。

  2.使學生進一步認識事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。

  3.初步滲透函數(shù)思想。

  教具準備:投影儀、投影片、小黑板。

  教學過程():

  一、復習

  1.讓學生說說什么是成正比例的量:

  2.用投影片出示下面的題:

  (1)下面各題中哪兩種量成正比例?為什么?

  ①筆記本單價一定,數(shù)量和總價:

  ⑨汽車行駛速度一定.行駛的路程和時間。

 、诠ぷ餍室欢ǎぷ鲿r間和工作總量。

 、僖淮竺椎闹亓恳欢ǎ粤说暮褪O碌。

  (2)說出每小時加工零件數(shù)、加工時間和加工零件總數(shù)三者間的數(shù)量關系。在什么條件下,其中兩種量成正比例?

  二、導入新課

  教師:如果加工零件總數(shù)一定。每小時加工數(shù)和加工時間會成什么樣的變化.關系怎樣?就是我們這節(jié)課要學習的內容。

  三、新課

  1.教學例4。

  出示例4;豐機械廠加工一批機器零件。每小時加工的數(shù)量和所需的加工時間如下表。

  讓學生觀察這個表,然后每四人一組討論下面的問題:

  (1)表中有哪兩種量?

  (2)所需的加工時間怎樣隨著每小時加工的個數(shù)變化?

  (3)每兩個相對應的數(shù)的乘積各是多少?

  學生分組討論后集中發(fā)言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數(shù)加工時間

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “這個積600。實際上是什么?”在“加工時間”后面板書:零件總數(shù)

  “積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)

  “每小時加工數(shù)、加工時間和零件總數(shù)這三種量有什么關系呢?”

  學生回答后,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數(shù)和所需的加工時間是兩種相關聯(lián)的量。所需的加工時間是隨著每小時加工數(shù)量的變化而變化的,每小時加工的數(shù)量擴大。所需的加工時間反而縮小3每小時加工的數(shù)量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規(guī)律是:每小時加工的'零件的數(shù)量和所需的加工時間的積都等于600,即總是一定的:我們把這種關系寫成式子就是:每小時加工數(shù)×加工的時間=零件總數(shù)(一定)。

  2.教學例5。

  用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數(shù)和裝訂的本數(shù)有什么關系呢?請你先填寫下表。

  (1)理解題意,填寫裝訂本數(shù)。

  “誰能說說表中第一欄數(shù)據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)

  “這40本是怎么計算出來的?”(用600÷15)

  “如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數(shù)填在教科書第23頁的表中!苯處煱褜W生報出的數(shù)據填在黑板上的表中。

  (2)觀察分析表中兩種量的變化規(guī)律。

  讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數(shù)裝訂的本數(shù))

  “裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化的?”隨著學生的回答,板書如下:每本的頁數(shù) 裝訂的本數(shù)

  15 40

  20 30

  25 24

  一’然后讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。

  1,單價一定.數(shù)量和總價。

  2,路程一定,速度和時間。。

  3,正方形的邊長和它的面積。

  1.時間一定,工效和工作總量。

  二、導入新課

  教師:我們在前兩節(jié)課分別學習了成正比例的量和成反比例的量。初步學會判斷

  兩種量是不是成正比例或反比例的關系,發(fā)現(xiàn)有些同學判斷時還不夠準確。這節(jié)課我

  們要通過比較弄清成正比例的量和成反比例的量有什么相同點和不同點。

  板書課題:正比例和反比例的比較

  三、新課

  1.教學例7。

  出示例7的兩個表:

  表1 表2

  讓學生觀察上面的兩個表,然后根據兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:

  在表l中: 在表2中:

  相關聯(lián)的量是路程和時間. 路程隨著相關聯(lián)的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化

  一定。因此,路程和時間 ,路程是一定的。因此,速

  成正比例關系。 度和時間成反比例關系

  然后提問:

  (1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據什么判斷路程和時間成正比例/

  (2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據什么判斷速度和時間成反比例?

  教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關系?

  板書:速度×時間=路程

  =速度 =速度

  教師:當速度一·定時,路程和時間成什么比例關系?

  教師:當路程一定時,速度和時間成什么比例關系?

  教師:當時間一定時。路程和速度成什么比例關系?

  2.比較正比例和反比例關系。

  教師:結合上面兩個例子,比較——下正比例關系和反比例關系,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納并板書:

  四、鞏固練習

  1.做教科書第28頁“做一做”中的題目。

  讓學生自己填,并說一說為什么。

  2.做練習七的第1—2題。

  教師巡視,個別輔導,最后訂正。

  五、小結

  教師:請同學們說說正比例和反比例關系有什么相同點和不同點?

反比例的意義教案8

  教學內容

  根據教科書自選內容。

  教學目標

  1.通過練習,使學生進一步理解并掌握反比例的意義,會正確判斷兩種相關聯(lián)的量是否成反比例,并能解決簡單的實際問題。

  2.進一步培養(yǎng)學生分析問題、解決問題的能力。

  3.結合實例,培養(yǎng)學生仔細分析、主動探索的良好的學習習慣。

  教學重點

  正確理解反比例的意義,并能作出正確的判斷。

  教學難點

  能根據反比例的意義,解決相關的實際問題。

  教學過程

  一、學習準備,揭示課題

  1.談話引入

  上節(jié)課我們學了什么?今天,我們進行練習(板書:反比例練習)。通過練習,達到以下兩個目標:①進一步理解反比例的意義,并能正確判斷兩個相關聯(lián)的量是否成反比例;②能根據反比例的意義,解決實際問題。

  2.你知道哪些有關反比例的知識

  板書:意義、字母表示:xy=k(一定)

  二、基本練習

  1.觀察下面三個表

 。1)表1中的兩種量是怎樣變化的?哪種量是一定的?每天燒煤量和燒的天數(shù)成什么比例?為什么?

 。2)表2中的兩種量是怎樣變化的?哪種量是一定的?用去的煤和剩下煤的噸數(shù)成比例嗎?為什么?

  (3)表3中的`兩種量是怎樣變化的?哪種量是一定的?平行四邊形的底和平行四邊形的高成什么比例?為什么?

  2.判斷

  判斷下面各題中的兩種量是否成比例。如果成比例,成什么比例?

  (1)平行四邊形的面積一定,它的底和高。

 。2)一筐桃平均分給猴子,猴子的只數(shù)和每只猴子分的個數(shù)。

 。3)報紙的單價一定,訂閱的份數(shù)與總價。

 。4)小剛跳高的高度和他的身高。

  (5)C=4a

  三、解決問題

  1.鞏固練習

  一輛汽車從甲地開往乙地,每時行70 km,5時到達。如果要4時到達,每時需要行駛多少千米?

 。1)學生讀題,理解題意。

 。2)會列式解答嗎?試試看。還可以怎么解?(引導學生用反比例知識解答)

  2.用比例知識解答

 。1)同學們做廣播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

 。2)用同樣的磚鋪地,鋪18 m2要用618塊磚。如果鋪24 m2,要用多少塊磚?

  學生獨立分析、解答,教師巡視,并加以指點。

  根據這兩道題組織學生討論正比例關系和反比例關系的相同點和不同點。

  討論后全班交流,教師引導學生歸納并板書。

  相同點:都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。

  不同點:正比例是相對應的兩個數(shù)的比值(商)一定。反比例是相對應的兩個數(shù)的積一定。

  四、變式提高練習

  按規(guī)律填數(shù)。

  (1)(1,36),(2,18),(3,12),(4,),(5,)

 。2)15,210,315,4(),()25

 。3)81,27,(),3,1,()

  五、全課小結

  同學們,今天我們學習了什么?你有什么收獲?還有哪些疑問?

  六、拓展練習

  根據自己的生活經驗,各構建一道生活中用正比例和反比例解決的問題,再解決,并與同學交流你構建問題的思考方法和解決問題的方法。

反比例的意義教案9

  教學目的:

  1、認識反比例關系的意義,理解掌握反比例量的變化規(guī)律及其特征,能正確判斷或不成反比例關系。

  2.掌握判斷成不成反比例關系的方法,培養(yǎng)學生判斷、推理能力。

  教學過程:

一、新課導入:

  學具操作:

  按要求拿小棒(共24根):12根、8根、6根、4根、3根、1根各可拿幾次:并填表

  每次取小棒根數(shù)12864321

  次數(shù)234681224

  引導學生研究:兩組數(shù)量關系中兩種有關聯(lián)之間的關系與我們上一課所學內容相同嗎?

  二、新課展開:

  1、出示例4

  根據問題討論:

  (1)表中有哪兩種量?

 。2)這兩種量是怎樣變化的?

 。3)相對應的每兩個數(shù)的乘積各是多少?

 。4)求出積后,你發(fā)現(xiàn)什么規(guī)律?

  回答上述問題并作點評

  提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想這個式子表示什么?

  2、學習例5

  出示P43三個問題讓學生研究后回答。

  老師作小結。

  3、概括反比例的意義。

  (1)說明什么是反比例的量,它們之間的關系叫反比例關系。

  追問:兩種量成不成反比例的關鍵是什么?

  如果用X和Y表示這兩種相關聯(lián)的量,用R表示他們的'乘積,那上面的這種關系怎樣寫呢?

  4、具體認識

 。1)例4時有哪兩種相關聯(lián)的量,它們成反比例關系嗎?為什么?

 。2)例5呢?

 。3)P46第4題。

  5、學習例6

 。1)怎樣判斷成不成反比例?

 。2)學生嘗試做例6。

  老師評講:

  三、鞏固練習

  1、判斷導入題中的兩種理成不成反比例。

  2、P44,練一練,第1、2題

  3、P46第6、7題

  四、課堂小結

  這節(jié)課我們學習了什么內容:你懂得了什么?

  五、課堂作業(yè)

  六、課后作業(yè)

  第5題剩下的題目。

反比例的意義教案10

  教學內容:

  《反比例的意義》是六年制小學數(shù)學(北師版)第十二冊第二單元中的內容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關系,加深對比例的理解。

  學生分析:

  在此之前,他們學習了正比例的意義,對“相關聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。

  教學目標:

  1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯(lián)的量是否成反比例。進一步培養(yǎng)學生觀察、學析、綜合和概括等能力。初步滲透函數(shù)思想。

  2、過程與方法:為學生營造一個經歷知識產生過程的情境。

  3、情感與態(tài)度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數(shù)學的信心。

  教學重點:理解反比例的意義。

  教學難點:兩種相關聯(lián)的.量的變化規(guī)律。

  教學準備:學生準備:復習正比例關系,預習本節(jié)內容。

  教師準備:投影片3張,每張有例題一個。

  教學過程設計:

  一、談話引入,激發(fā)興趣。

  1、談話:通過最近一段時間的觀察,我發(fā)現(xiàn)同學們越來越聰明了,會學數(shù)學了,這是因為同學們掌握了一定的數(shù)學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節(jié)課我們用同樣的學習方法來研究比例的另外一個規(guī)律。

  2、導入:在實際生活中,存在著許多相關聯(lián)的量,這些相關聯(lián)的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。

  二、創(chuàng)設情景引新:

 。ǔ鍪荆菏䝼小方塊)

  師:同學們,這十二個小方塊有幾種排法?

  (生答后,老師板書下表的排列過程)

  每行個數(shù)1234612

  行數(shù)1264321

  師:請你觀察上表中每行個數(shù)與行數(shù)成正比例關系嗎?為什么?

  生:……

  師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內容。

 。ǔ鍪菊n題:反比例的意義)

  三、合作自學探知

  1、學習例4。

  (1)出示例4。

  師:請同學們在小組內互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。

  A、表中有哪兩種量?

  B、怎樣隨著每小時加工的數(shù)量變化?

  c、每兩個相對應的數(shù)的乘積各是多少?

  學生討論……

  生反饋:……

  師:能不能舉出三個例子

  生:1020=6002030=6003020=600……

  師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關系式嗎?

  生:……

  [板書出示:每小時加工數(shù)加工時間=零件總數(shù)(一定)]

  2、自學例5:

 。1)出示例5:

  師:先請同學們按要求在書上填空,并說說是怎樣算的?根據什么?

  生:……

  師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)

  生:……

  3、討論準備題:

 。1)請你根據例4的方法,四人小組內說一說。

 。2)請你舉例說明表中每行個數(shù)與行數(shù)是什么關系?為什么?

  四、比較感知特征

  綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?

  生:……

  五、引導概括意義

  1、概括反比例意義。

  學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。

  師:請同學們根據我們上節(jié)課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?

  生:……

  師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。

  學生互相練習……

  師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?

  生:……

  師:例4、例5和準備題中的兩種量成不成反比例?為什么?

  生:……(學生回答后,老師及時糾正)

  師:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?

  生:……[板書出示y=k(一定)]

  2、教學例6。

 。1)課件出示例6。

 。▽W生讀題、思考)

  師:怎樣判斷兩種量成不成反比例?

  師:哪位同學說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?

  生:因為每天播種的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。

  六、小結:這節(jié)課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?

  [案例分析]:

  通過聯(lián)系生活實際,學習成反比例的量,體會數(shù)學與生活的緊密聯(lián)系。不對研究的過程做詳細的引導和說明,只提供研究的素材和數(shù)據,出示關鍵性的結論,充分發(fā)揮學生的主動性,以體現(xiàn)自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質。同時加深學生對數(shù)量關系的認識,滲透函數(shù)思想,為中學的數(shù)學學習做好知識準備。學習方式的轉變是新課改的顯著特征,就是把學習過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認識活動凸顯出來。在設計《反比例的意義》時,根據學生的知識水平,對教學內容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。

反比例的意義教案11

  學情分析

  在此之前,他們學習了正比例的意義,對“相關聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。

  教學目標

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據判斷兩種量成不成反比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點和難點

  教學重點:認識反比例關系的意義。

  教學難點 :掌握成反比例量的變化規(guī)律及其特征。

  教學過程一、復習導入

  1.正比例關系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、教學新課

  1.教學例4。

  出示例4。讓學生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?點名讓學生按學習正比例的方法觀察表里內容,相互之間討論,發(fā)現(xiàn)了什么?

  點名學生口答討論的結果,得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的'。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(板書補充:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例5。

  出示例5。

  按照剛才學習例4的方法,自己學習例5,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,指名學生口答從表里發(fā)現(xiàn)了些什么?再提問:這兩種相關聯(lián)量變化的規(guī)律是什么?

  (板書:每袋重量和袋數(shù)的積一定)

  乘積8000是什么數(shù)量,這種數(shù)量關系用式子怎樣表示?

  [板書:每袋重量×袋數(shù)=糖果總重量(積一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)

  3.概括。

  (1)綜合例4、例5的共同點。

  提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例4、例5里兩種相關聯(lián)的量,它們是什么關系的量呢?

  像例4、例5里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。

  問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?

  (乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。

  4.具體認識。

  (1)提問:例4里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,

  例5里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?

  (3)做練習八第4題。

  讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]

  (4)判斷。

  現(xiàn)在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據上面所說的,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。

  三、鞏固練習

  1. 做“練一練”第l,2,3,4,5題。

  指名口答,說說理由。思考時可以引導看數(shù)量關系式,說明理由。

  2.拓展應用。

  3.綜合練習

  四、課堂小結

  這節(jié)課學習的是什么內容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?

  五、課堂作業(yè)

反比例的意義教案12

  教學過程:

  一、復習鋪墊

  1、下面兩種量是不是成正比例?為什么?

  購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、導入新課:這節(jié)課我們繼續(xù)學習常見的數(shù)量關系中的另一種特征成反比例的量。

  2、教學P42例3。

  (1)引導學生觀察上表內數(shù)據,然后回答下面問題:

  A、表中有哪兩種量?這兩種量相關聯(lián)嗎?為什么?

  B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

  C、表中兩個相對應的數(shù)的比值各是多少?一定嗎?兩個相對應的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?

  D、這個積表示什么?寫出表示它們之間的數(shù)量關系式

 。2)從中你發(fā)現(xiàn)了什么?這與復習題相比有什么不同?

  A、學生討論交流。

  B、引導學生回答:

 。3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。

 。4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)

  三、鞏固練習

  1、想一想:成反比例的'量應具備什么條件?

  2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

 。1)路程一定,速度和時間。

  (2)小明從家到學校,每分走的速度和所需時間。

 。3)平行四邊形面積一定,底和高。

  (4)小林做10道數(shù)學題,已做的題和沒有做的題。

 。5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

 。6)你能舉一個反比例的例子嗎?

  四、全課小節(jié)

  這節(jié)課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

  五、課堂練習

  P45~46練習七第6~11題。

  教學目的:

  1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。

  2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。

  3、初步滲透函數(shù)思想。

  教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數(shù)積一定,進而抽象概括出成反比例的關系式。

  教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

反比例的意義教案13

  一、教學目標

  1.使學生理解并掌握反比例函數(shù)的概念

  2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式

  3.能根據實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想

  二、重、難點

  1.重點:理解反比例函數(shù)的概念,能根據已知條件寫出函數(shù)解析式

  2.難點:理解反比例函數(shù)的概念

  3.難點的突破方法:

  (1)在引入反比例函數(shù)的概念時,可適當復習一下第11章的正比例函數(shù)、一次函數(shù)等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解

 。2)注意引導學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。

 。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式

  三、例題的意圖分析

  教材第46頁的'思考題是為引入反比例函數(shù)的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。

  教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的“變化與對應”的思想,特別是函數(shù)與自變量之間的單值對應關系。

  補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關系式,有一定難度,但能提高學生分析、解決問題的能力。

  四、課堂引入

  1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?

  2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?

  五、例習題分析

  例1.見教材P47

  分析:因為y是x的反比例函數(shù),所以先設,再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

  例1.(補充)下列等式中,哪些是反比例函數(shù)

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根據反比例函數(shù)的定義,關鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式

  例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?

  分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤

反比例的意義教案14

  教學內容:教材第99~102頁例1~例3。

  教學要求:

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據反比例的意義判斷兩種量成不成反比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:認識反比例關系的意義。

  教學難點:掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、鋪墊孕伏:

  1.正比例關

  系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、自主探究:

  1.教學例2。

  出示例2某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務。

  每天運的數(shù)量(噸)1020304050

  所需的天數(shù)

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答討論的結果,得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例1

  出示例1。

  請同學們按照剛才學習例4的方法,自己學習例1,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,小組討論:長方形的面積比變,當長發(fā)生變化時,長方形的`寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用xy=k(一定)來表示。

  4.具體認識。

  (1)提問:例1里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,

  例2里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?

  (3)判斷。

  現(xiàn)在回過來看開始寫的關系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。

  5.教學例3。

  出示例3,看書自學,小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?

  三、鞏固練習

  用剛才我們說的判斷方法來做幾道題。

  1.做練一練。

  指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)

  2.下題兩種相關聯(lián)量成不成反比例?為什么?

  一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做練習十二第1題。

  四、課堂小結

  這節(jié)課學習的是什么內容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?

  五、課堂作業(yè)

  練習十二第2~4題。

反比例的意義教案15

  設計說明

  1.注重培養(yǎng)學生學習的自主性。

  引導和培養(yǎng)學生的自主學習能力是切實可行的,對學生養(yǎng)成終身學習的習慣起著不可估量的重要作用。本設計通過讓學生找玩具汽車數(shù)量與小人書數(shù)量之間存在的比例關系和列舉比例等,調動學生的學習熱情,使學生的學習興趣和求知欲望得到激發(fā),思維得到拓展。

  2.培養(yǎng)學生的解題能力。

  本設計以扶代講,巧妙地引導學生主動探究,使學生在解決問題的過程中,不但能理解和掌握解比例的方法,而且能體會到數(shù)學與生活的密切聯(lián)系,使學生的解題能力、合作能力及歸納能力得到提高。

  課前準備

  多媒體課件

  教學過程

  ⊙創(chuàng)設情境,提出問題

  1.介紹“物物交換”的背景知識。

  人類使用貨幣的歷史產生于最早出現(xiàn)物質交換的時代。在原始社會,人們使用“物物交換”的方式交換自己所需要的物資,如用一只羊換一把斧頭。我們今天所學的數(shù)學知識就從“物物交換”開始。

  2.呈現(xiàn)問題。

  同學們算一算,14個玩具汽車可以換多少本小人書?

  設計意圖:通過“物物交換”,激發(fā)學生的興趣,接著呈現(xiàn)“玩具汽車換小人書”這一情境并提出問題,激發(fā)學生學習的熱情,為探究新知奠定基礎。

  ⊙嘗試解決,體會聯(lián)系

  1.想一想。

  師:同學們算一算,14個玩具汽車可以換多少本小人書?把你的想法記錄在本上。

  2.說一說。

  教師引導學生交流各自的想法,體會在“物物交換”的過程中,玩具汽車的數(shù)量與小人書的數(shù)量之間存在的關系。

  預設

  方法一14÷4=3.5,3.5×10=35(本)。

  方法二10÷2=5,14÷2=7,5×7=35(本)。

  方法三4個玩具汽車=10本小人書,14÷4=3……2,2個玩具汽車=5本小人書,10×3+5=35(本)。

  方法四4個玩具汽車=10本小人書,8個玩具汽車=20本小人書,12個玩具汽車=30本小人書,2個玩具汽車=5本小人書,12+2=14(個),30+5=35(本)。

  ⊙自主學習,探究新知

  1.提出新的要求。

  師:假設14個玩具汽車可以換x本小人書,你能嘗試用比例的知識解決問題嗎?

  2.學生嘗試列式。

  預設

  方法一4∶10=14∶x。

  方法二10∶4=x∶14。

  方法三14∶4=x∶10。

  方法四4∶14=10∶x。

  3.交流匯報寫出比例的主要依據。

  4.學生獨立解比例。

  5.匯報結果。

  預設

  生1:根據在比例里,兩個內項的積等于兩個外項的積,可以把這個比例轉化成4x=10×14。

  生2:我是這樣計算的`:

  4∶10=14∶x

  解:4x=140

  x=35

  6.出示課堂活動卡,組織學生先和同伴交流,再獨立解決。

  (師巡視,適時指導)

  7.驗算:把求出的結果代入比例驗算一下,看等式是否成立。

 。▽W生自主驗算)

  8.教師小結。

  解比例的關鍵是根據“內項的積等于外項的積”寫成等式,再用等式的性質解方程。

  設計意圖:將解比例的學習融入到問題解決的過程中,引導學生自主獨立解決,然后組織學生匯報自己的解法,這樣學生對新知識就會更加理解。

【反比例的意義教案】相關文章:

反比例的意義教學反思11-23

《反比例的意義》教學設計12-15

《反比例意義》教學反思12-10

反比例意義教學反思02-11

反比例的意義教學反思03-24

《反比例意義》教學反思11-17

反比例的意義教學反思01-26

反比例意義教學反思12-21

反比例的意義教學設計01-30