- 初一數(shù)學(xué)上冊知識點(diǎn)總結(jié) 推薦度:
- 相關(guān)推薦
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)
總結(jié)是在某一特定時間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書面材料,他能夠提升我們的書面表達(dá)能力,讓我們一起認(rèn)真地寫一份總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編整理的北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,大家一起來看看吧。
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)1
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2. 一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的'檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2. 括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))
2. 去括號(按去括號法則和分配律)
3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實(shí)際問題的一般步驟
1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3. 列:根據(jù)題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗(yàn)所求的解是否符合題意.
6. 答:寫出答案(有單位要注明答案)
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)2
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的.特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)3
1、單項式的定義:
由數(shù)或字母的積組成的式子叫做單項式。
說明:單獨(dú)的一個數(shù)或者單獨(dú)的一個字母也是單項式.
2、單項式的系數(shù):
單項式中的數(shù)字因數(shù)叫這個單項式的系數(shù).
說明:⑴單項式的系數(shù)可以是整數(shù),也可能是分?jǐn)?shù)或小數(shù)。如3x的系數(shù)是3的32
系數(shù)是1;4.8a的系數(shù)是4.8; 3
、茊雾検降南禂(shù)有正有負(fù),確定一個單項式的系數(shù),要注意包含在它前面的符號,
?4xy2的系數(shù)是4;2x2y的系數(shù)是4;
、菍τ谥缓凶帜敢驍(shù)的單項式,其系數(shù)是1或-1,不能認(rèn)為是0,如?ab的
系數(shù)是-1;ab的系數(shù)是1;
、缺硎緢A周率的π,在數(shù)學(xué)中是一個固定的常數(shù),當(dāng)它出現(xiàn)在單項式中時,應(yīng)將其作為系數(shù)的一部分,而不能當(dāng)成字母。如2πxy的系數(shù)就是2.
3、單項式的次數(shù):
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).
說明:⑴計算單項式的次數(shù)時,應(yīng)注意是所有字母的指數(shù)和,不要漏掉字母指數(shù)是1
的情況。如單項式2xyz的次數(shù)是字母z,y,x的指數(shù)和,即4+3+1=8,
而不是7次,應(yīng)注意字母z的指數(shù)是1而不是0;
⑵單項式的'指數(shù)只和字母的指數(shù)有關(guān),與系數(shù)的指數(shù)無關(guān)。
、菃雾検绞且粋單獨(dú)字母時,它的指數(shù)是1,如單項式m的指數(shù)是1,單項式是單獨(dú)的一個常數(shù)時,一般不討論它的次數(shù);
4、在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作“* ”或者省略不寫。
5、在書寫單項式時,數(shù)字因數(shù)寫在字母因數(shù)的前面,數(shù)字因數(shù)是帶分?jǐn)?shù)時轉(zhuǎn)化成假分?jǐn)?shù).。
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)4
知識點(diǎn)、概念總結(jié)
1.不等式:用符號"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的.不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性質(zhì): (1)如果x>y,那么yy;(對稱性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運(yùn)用不等式性質(zhì)2、3) (2)去括號 (3)移項(運(yùn)用不等式性質(zhì)1) (4)合并同類項 (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3) (6)有些時候需要在數(shù)軸上表示不等式的解集 10.一元一次不等式與一次函數(shù)的綜合運(yùn)用: 一般先求出函數(shù)表達(dá)式,再化簡不等式求解。 11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成 了一個一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個不等式的解集; (2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸) (3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結(jié)論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無公共部分分開無解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無解 15.應(yīng)用不等式組解決實(shí)際問題的步驟 (1)審清題意 (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組 (3)解不等式組 (4)由不等式組的解確立實(shí)際問題的解 (5)作答 16.用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。 第二章:整式的加減 1、單項式:;單獨(dú)的一個數(shù)或一個字母也是單項式 2、系數(shù):; 3、單項式的次數(shù):; 4、多項式:; 叫做多項式的項;的項叫做常數(shù)項。 5、多項式的次數(shù):; 6、整式:; 7、同類項:; 8、把多項式中的同類項合并成一項,叫做合并同類項; 合并同類項后,所得項的系數(shù)是合并同前各同類項的系數(shù)的和,且字母部分不變。 9、去括號:(1)如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同 (2)如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反 10、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項 第三章:一次方程(組) 一、方程的有關(guān)概念 1、方程的概念: (1)含有未知數(shù)的等式叫方程。 (2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。 2、等式的基本性質(zhì): (1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。 (2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。若a=b,則ac=bc或 二、解方程 1、移項的有關(guān)概念: 把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項。這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號。 2、解一元一次方程的步驟: 解一元一次方程的步驟 主要依據(jù) 1、去分母 等式的性質(zhì)2 2、去括號 去括號法則、乘法分配律 3、移項 等式的性質(zhì)1 4、合并同類項 合并同類項法則 5、系數(shù)化為1 等式的性質(zhì)2 6、檢驗(yàn) 3、二元一次方程組 (1)將二元一次方程用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù); (2)解二元一次方程組的.指導(dǎo)思想是轉(zhuǎn)化的思想; (3)解二元一次方程組的方法有:加減消元法;代入消元法; 二、列方程解應(yīng)用題 1、列方程解應(yīng)用題的一般步驟: (1)將實(shí)際問題抽象成數(shù)學(xué)問題; (2)分析問題中的已知量和未知量,找出等量關(guān)系; (3)設(shè)未知數(shù),列出方程; (4)解方程; (5)檢驗(yàn)并作答。 2、一些實(shí)際問題中的規(guī)律和等量關(guān)系: (1)幾種常用的面積公式: 長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積; 梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積; 圓形的面積公式:,r為圓的半徑,S為圓的面積; 三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。 (2)幾種常用的周長公式: 長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。 正方形的周長:L=4a,a為正方形的邊長,L為周長。 圓:L=2πr,r為半徑,L為周長。 1.4 有理數(shù)的乘除法 有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。 乘積是1的兩個數(shù)互為倒數(shù)。 有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。 兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì 求n個相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。 負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。 把一個大于10的數(shù)表示成a×10的n次方的形式,用的就是科學(xué)計數(shù)法。 從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。 上面內(nèi)容是初中數(shù)學(xué)有理數(shù)的乘除法知識點(diǎn)總結(jié),想必大家都已經(jīng)做好筆記了,接下來還有更詳細(xì)的初中數(shù)學(xué)知識點(diǎn)盡在哦,希望同學(xué)們關(guān)注了。 初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系 下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。 平面直角坐標(biāo)系 平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。 水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合 三個規(guī)定: 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。 ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。 相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。 初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成 對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。 平面直角坐標(biāo)系的構(gòu)成 在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的'方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。 通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。 初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì) 下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。 點(diǎn)的坐標(biāo)的性質(zhì) 建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。 對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。 一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。 (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù) (3)注意:有理數(shù)中,1、0、-1是三個特殊的.數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù); a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù). 有理數(shù)比大。 (1)正數(shù)的絕對值越大,這個數(shù)越大; (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小; (3)正數(shù)大于一切負(fù)數(shù); (4)兩個負(fù)數(shù)比大小,絕對值大的反而小; (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0. 正數(shù)和負(fù)數(shù) 、薄⒄龜(shù)和負(fù)數(shù)的概念 負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù) 注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時,—a是正數(shù);當(dāng)a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷) 、谡龜(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。 2、具有相反意義的量 若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如: 零上8℃表示為:+8℃;零下8℃表示為:—8℃ 3、0表示的'意義 (1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人; (2)0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如: (3)0表示一個確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。 有理數(shù) 1、有理數(shù)的概念 (1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù)) 。2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù) (3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。 理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù) 注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。 第一章:豐富的圖形世界 1、幾何圖形 從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。 2、點(diǎn)、線、面、體 、賻缀螆D形的組成 點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。 線:面和面相交的地方是線,分為直線和曲線。 面:包圍著體的是面,分為平面和曲面。 體:幾何體也簡稱體。 、邳c(diǎn)動成線,線動成面,面動成體。 3、生活中的立體圖形 生活中的立體圖形(按名稱分) 柱: ①圓柱 、诶庵喝庵⑺睦庵ㄩL方體、正方體)、五棱柱、…… 錐: ①圓錐 、诶忮F 球 4、棱柱及其有關(guān)概念: 棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。 側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。 n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點(diǎn)。 5、正方體的平面展開圖: 11種(經(jīng)?迹嚎荚囆问剑赫归_的圖形能否圍成正方體;正方體對面圖案) 6、截一個正方體: 用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。 7、三視圖: 物體的三視圖指主視圖、俯視圖、左視圖。 主視圖:從正面看到的圖,叫做主視圖。 左視圖:從左面看到的圖,叫做左視圖。 俯視圖:從上面看到的圖,叫做俯視圖。 第二章:有理數(shù)及其運(yùn)算 1、有理數(shù)的分類 、僬欣頂(shù) 有理數(shù){ ②零 ③負(fù)有理數(shù) 有理數(shù){ ①整數(shù) 、诜?jǐn)?shù) 2、相反數(shù): 只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零 3、數(shù)軸: 規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示。 4、倒數(shù): 如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。 5、絕對值: 在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值,(|a|≥0)。 若|a|=a,則a≥0; 若|a|=-a,則a≤0。 正數(shù)的絕對值是它本身; 負(fù)數(shù)的絕對值是它的相反數(shù); 0的絕對值是0。 互為相反數(shù)的兩個數(shù)的絕對值相等。 6、有理數(shù)比較大小: 正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù); 數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大; 兩個負(fù)數(shù),絕對值大的反而小。 7、有理數(shù)的運(yùn)算: ①五種運(yùn)算:加、減、乘、除、乘方 多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。 有理數(shù)加法法則: 同號兩數(shù)相加,取相同的符號,并把絕對值相加。 異號兩數(shù)相加,絕對值值相等時和為0; 絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。 一個數(shù)同0相加,仍得這個數(shù)。 互為相反數(shù)的兩個數(shù)相加和為0。 有理數(shù)減法法則: 減去一個數(shù),等于加上這個數(shù)的相反數(shù)! 有理數(shù)乘法法則: 兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。 任何數(shù)與0相乘,積仍為0。 有理數(shù)除法法則: 兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。 0除以任何非0的數(shù)都得0。 注意:0不能作除數(shù)。 有理數(shù)的乘方:求n個相同因數(shù)a的積的運(yùn)算叫做乘方。 正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。 、谟欣頂(shù)的運(yùn)算順序 先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。 、圻\(yùn)算律(5種) 加法交換律 加法結(jié)合律 乘法交換律 乘法結(jié)合律 乘法對加法的分配律 8、科學(xué)記數(shù)法 一般地,一個大于10的數(shù)可以表示成a× 10n的形式,其中1≦n<10,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)—1) 第三章:整式及其加減 1、代數(shù)式 用運(yùn)算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。 注意: 、俅鷶(shù)式中除了含有數(shù)、字母和運(yùn)算符號外,還可以有括號; 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式; ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。 代數(shù)式的.書寫格式: 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt; 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a; 、蹘Х?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)。 ④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略; ⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。 ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。 2、整式:單項式和多項式統(tǒng)稱為整式。 ①單項式: 都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。 注意: 單獨(dú)的一個數(shù)或一個字母也是單項式; 單獨(dú)一個非零數(shù)的次數(shù)是0; 當(dāng)單項式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。 ②多項式: 幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。 、弁愴棧 所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。 注意: ①同類項有兩個條件:a。所含字母相同;b。相同字母的指數(shù)也相同。 、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān); ③幾個常數(shù)項也是同類項。 4、合并同類項法則: 把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 5、去括號法則 ①根據(jù)去括號法則去括號: 括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。 、诟鶕(jù)分配律去括號: 括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達(dá)到去括號的目的。 6、添括號法則 添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。 7、整式的運(yùn)算: 整式的加減法:(1)去括號;(2)合并同類項。 第四章基本平面圖形 1、線段、射線、直線 名稱 表示方法 端點(diǎn) 長度 直線 直線AB(或BA) 直線l 無端點(diǎn) 無法度量 射線 射線OM 1個 無法度量 線段 線段AB(或BA) 線段l 2個 可度量長度 2、直線的性質(zhì) 、僦本公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。) ②過一點(diǎn)的直線有無數(shù)條。 、壑本是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。 3、線段的性質(zhì) ①線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。) 、趦牲c(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。 ③線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。 4、線段的中點(diǎn): 點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。 5、角: 有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。 6、角的表示 角的表示方法有以下四種: ①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。 、谟眯懙南ED字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。 、塾靡粋大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。 注意:用三個大寫字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。 7、角的度量 角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。 把1°的角60等分,每一份叫做1分的角,1分記作“1’”。 把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。 1°=60’,1’=60” 8、角的平分線 從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。 9、角的性質(zhì) ①角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。 、诮堑拇笮】梢远攘浚梢员容^,角可以參與運(yùn)算。 10、平角和周角: 一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。 終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。 11、多邊形: 由若干條不在同一條直線上的線段首尾順次相連組成的'封閉平面圖形叫做多邊形。 連接不相鄰兩個頂點(diǎn)的線段叫做多邊形的對角線。 從一個n邊形的同一個頂點(diǎn)出發(fā),分別連接這個頂點(diǎn)與其余各頂點(diǎn),可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。 12、圓: 平面上,一條線段繞著一個端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)形成的圖形叫做圓。 固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。 圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”; 由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。 頂點(diǎn)在圓心的角叫做圓心角。 第五章一元一次方程 1、方程 含有未知數(shù)的等式叫做方程。 2、方程的解 能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。 3、等式的性質(zhì) ①等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。 、诘仁降膬蛇呁瑫r乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。 4、一元一次方程 只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。 5、移項: 把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。 6、解一元一次方程的一般步驟: ①去分母 、谌ダㄌ ③移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。) 、芎喜⑼愴 、輰⑽粗獢(shù)的系數(shù)化為1 第六章數(shù)據(jù)的收集與整理 1、普查與抽樣調(diào)查 為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。 其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。 從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。 2、扇形統(tǒng)計圖 扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1) 圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°) 3、頻數(shù)直方圖 頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。 4、各種統(tǒng)計圖的特點(diǎn) 條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。 折線統(tǒng)計圖:能清楚地反映事物的變化情況。 扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。 一、知識梳理 知識點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。 知識點(diǎn)2:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種: 注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分?jǐn)?shù)。 知識點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。 知識點(diǎn)4:絕對值的概念: (1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記作|a|; (2)代數(shù)意義:一個正數(shù)的'絕對值是它的本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零。 注:任何一個數(shù)的絕對值均大于或等于0(即非負(fù)數(shù)). 知識點(diǎn)5:相反數(shù)的概念: (1)幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個點(diǎn)所表示的數(shù),叫做互為相反數(shù); 。2)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。 知識點(diǎn)6:有理數(shù)大小的比較: 有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。 數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。 用絕對值進(jìn)行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負(fù)數(shù),絕對值大的負(fù)數(shù)反而小。 知識點(diǎn)7:有理數(shù)加法法則: (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù). 知識點(diǎn)8:有理數(shù)加法運(yùn)算律: 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。 知識點(diǎn)9:有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 知識點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號和加號,并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計算。 有理數(shù)加法法則 1、同號兩數(shù)相加,取相同的符號,并把絕對值相加; 2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值; 3、一個數(shù)與0相加,仍得這個數(shù)。 有理數(shù)加法的.運(yùn)算律 1、加法的交換律:a+b=b+a; 2、加法的結(jié)合律:(a+b)+c=a+(b+c) 有理數(shù)減法法則 減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b) 有理數(shù)乘法法則 1、兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘; 2、任何數(shù)同零相乘都得零; 3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。 一、方程的有關(guān)概念 1.方程:含有未知數(shù)的等式就叫做方程。 2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。 3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。 注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。 二、等式的性質(zhì) (1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc (2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc 三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。 四、去括號法則 1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同. 2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變. 五、解方程的一般步驟 1.去分母(方程兩邊同乘各分母的最小公倍數(shù)) 2.去括號(按去括號法則和分配律) 3.移項(把含有未知數(shù)的.項移到方程一邊,其他項都移到方程的另一邊,移項要變號) 4.合并(把方程化成ax=b(a0)形式) 5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。 六、用方程思想解決實(shí)際問題的一般步驟 1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。 2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。 3.列:根據(jù)題意列方程。 4.解:解出所列方程。 5.檢:檢驗(yàn)所求的解是否符合題意。 6.答:寫出答案(有單位要注明答案)。 七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系 1、和、差、倍、分問題: 。1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。 (2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。 2、等積變形問題: “等積變形”是以形狀改變而體積不變?yōu)榍疤帷3S玫攘筷P(guān)系為: 、傩螤蠲娣e變了,周長沒變; ②原料體積=成品體積。 3、勞力調(diào)配問題: 這類問題要搞清人數(shù)的變化,常見題型有: (1)既有調(diào)入又有調(diào)出。 (2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。 (3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。 4、數(shù)字問題 。1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個三位數(shù)表示為:100a+10b+c (2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。 5、工程問題: 工程問題中的三個量及其關(guān)系為:工作總量=工作效率工作時間 6、行程問題: (1)行程問題中的三個基本量及其關(guān)系:路程=速度時間。 (2)基本類型有 、傧嘤鰡栴}; 、谧芳皢栴};常見的還有:相背而行;行船問題;環(huán)形跑道問題。 7、商品銷售問題 有關(guān)關(guān)系式: 商品利潤=商品售價商品進(jìn)價=商品標(biāo)價折扣率商品進(jìn)價 商品利潤率=商品利潤/商品進(jìn)價 商品售價=商品標(biāo)價折扣率 8、儲蓄問題 (1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅 (2)利息=本金利率期數(shù) 本息和=本金+利息 利息稅=利息稅率(20%) 今天的內(nèi)容就介紹這里了。 一、一元一次不等式的解法: 一元一次不等式的解法與一元一次方程的解法類似,其步驟為: 1、去分母; 2、去括號; 3、移項; 4、合并同類項; 5、系數(shù)化為1 二、不等式的基本性質(zhì): 1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變; 2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變; 3、不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。 三、不等式的解: 能使不等式成立的未知數(shù)的值,叫做不等式的解。 四、不等式的解集: 一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。 五、解不等式的依據(jù)不等式的基本性質(zhì): 性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變, 性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變, 性質(zhì)3:不等式兩邊乘以(或除以)同一個負(fù)數(shù),不等號的方向改變, 常見考法 。1)考查一元一次不等式的解法; 。2)考查不等式的性質(zhì)。 誤區(qū)提醒 忽略不等號變向問題。 初中數(shù)學(xué)重點(diǎn)知識點(diǎn)歸納 有理數(shù)乘法的運(yùn)算律 1、乘法的交換律:ab=ba; 2、乘法的結(jié)合律:(ab)c=a(bc); 3、乘法的分配律:a(b+c)=ab+ac 單項式 只含有數(shù)字與字母的積的代數(shù)式叫做單項式。 注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。 多項式 1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的`項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。 2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。 提高數(shù)學(xué)思維的方法 轉(zhuǎn)化思維 轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。 創(chuàng)新思維 創(chuàng)新思維是指以新穎獨(dú)創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解 要培養(yǎng)質(zhì)疑的習(xí)慣 在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。 在孩子放學(xué)回家后,讓孩子回顧當(dāng)天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當(dāng)孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。 有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨(dú)立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。 (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類:①整數(shù)②分?jǐn)?shù) (3)注意:有理數(shù)中,1、0、-1是三個特殊的'數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù); a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0?a是負(fù)數(shù)或0a是非正數(shù). 有理數(shù)比大。 (1)正數(shù)的絕對值越大,這個數(shù)越大; (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小; (3)正數(shù)大于一切負(fù)數(shù); (4)兩個負(fù)數(shù)比大小,絕對值大的反而小; (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0. 平面直角坐標(biāo)系 1.定義:平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向?yàn)檎较?兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 2.平面上的任意一點(diǎn)都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標(biāo),b是縱坐標(biāo)。 3.原點(diǎn)的坐標(biāo)是(0,0); 縱坐標(biāo)相同的點(diǎn)的連線平行于x軸; 橫坐標(biāo)相同的點(diǎn)的連線平行于y軸; x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0); y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y)。 4.建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。 5.幾個象限內(nèi)點(diǎn)的特點(diǎn): 第一象限(+,+);第二象限(—,+); 第三象限(—,—);第四象限(+,—)。 6.(x,y)關(guān)于原點(diǎn)對稱的點(diǎn)是(—x,—y); (x,y)關(guān)于x軸對稱的點(diǎn)是(x,—y); (x,y)關(guān)于y軸對稱的點(diǎn)是(—x,y)。 7.點(diǎn)到兩軸的距離:點(diǎn)P(x,y)到x軸的距離是︱y︳; 點(diǎn)P(x,y)到y(tǒng)軸的距離是︱x︳。 8.在第一、三象限角平分線上的點(diǎn)的坐標(biāo)是(m,m); 在第二、四象限叫平分線上的點(diǎn)的坐標(biāo)是(m,—m)。 不等式與不等式組 (1)不等式 用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)5
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)6
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)7
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)8
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)9
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)10
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)11
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)12
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)13
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)14
北師大版初一數(shù)學(xué)知識點(diǎn)總結(jié)15