- 相關(guān)推薦
《冪函數(shù)》教案
作為一名無私奉獻的老師,時常需要用到教案,教案是教學藍圖,可以有效提高教學效率。教案應(yīng)該怎么寫呢?下面是小編為大家整理的《冪函數(shù)》教案,歡迎閱讀與收藏。
《冪函數(shù)》教案1
一、教學內(nèi)容分析
教材地位:冪函數(shù)是中學教材中的一個基本內(nèi)容,即是對正比例函數(shù)、反比例函數(shù)、二次函數(shù)的系統(tǒng)總結(jié),也是對這些函數(shù)的概況和一般化、
教學重點:冪函數(shù)的圖像與性質(zhì)、
教學難點:以冪函數(shù)為背景的圖像變換、
二、教學目標設(shè)計
能描繪常見冪函數(shù)的圖像,掌握冪函數(shù)的基本性質(zhì);理解冪函數(shù)圖像的演進及單調(diào)性質(zhì);理解冪函數(shù)圖形特征與代數(shù)特征的對稱聯(lián)系,在函數(shù)性質(zhì)的應(yīng)用中體會它的價值。能以冪函數(shù)為背景進行基本的函數(shù)圖像的平移和對稱變換、
三、教學流程設(shè)計
設(shè)置情境→探索研究→總結(jié)提煉
→嘗試應(yīng)用→練習回饋→設(shè)置評價
五、教學過程設(shè)計
1、情境設(shè)置
指導學生描畫一些典型的冪函數(shù)的圖像,回憶并歸納冪函數(shù)的性質(zhì)、
2、探索研究
問題:如圖所示的分別是冪函數(shù)①,②,③,④,⑤,⑥,⑦在坐標系中第一象限內(nèi)的圖像,請盡可能精確地將指數(shù)的范圍分別確定出來
3、總結(jié)提煉
揭示冪函數(shù)圖像特征與底數(shù)的依賴關(guān)系、師生共同整理出規(guī)律性結(jié)論、
4、嘗試應(yīng)用
、伲1)研究函數(shù)的圖像之間的.關(guān)系;
(2)在同一坐標中作上述函數(shù)的圖像;
(3)由所作函數(shù)的圖像判斷最后一個函數(shù)的奇偶性、單調(diào)性、
②已知函數(shù)
。1)試求該函數(shù)的零點,并作出圖像;
(2)是否存在自然數(shù),使=1000,若存在,求出;若不存在,請說明理由、
、圩骱瘮(shù)的大致圖像、
5、練習回饋
課本第83頁練習4、1(2)
六、教學評價設(shè)計
習題4、1——
B組(根據(jù)學生具體情況選用)
《冪函數(shù)》教案2
教學目標
1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.
3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.
教學重點與難點
教學重點:函數(shù)單調(diào)性的概念.
教學難點:函數(shù)單調(diào)性的判定.
教學過程設(shè)計
一、引入新課
師:請同學們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變小.雖然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)
二、對概念的分析
。ò鍟n題:)
師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!
。ㄍㄟ^教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)
師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……
。ú话言捳f完,指一名學生接著說完,讓學生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).
。▽W生可能回答得不完整,教師應(yīng)指導他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?
。▽W生思索.)
學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應(yīng)該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.
。ń處熢趯W生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>
生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數(shù)值是一個數(shù).
師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的.例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
。ㄔ趯W生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
。▽W生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個反例來說明“任意”呢?
(讓學生思考片刻.)
生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
。ń處熗ㄟ^一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.
。ㄖ赋鲇枚x證明的必要性.)
師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.
。ń處熝惨,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.
。▽W生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.
上是減函數(shù).
(教師巡視.對學生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示:
。1)分式問題化簡方法一般是通分.
。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.
對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)
四、課堂小結(jié)
師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
。ㄕ堃粋思路清晰,善于表達的學生口述,教師可從中給予提示.)
生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.
五、作業(yè)
1.課本P53練習第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學設(shè)計說明
是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.
《冪函數(shù)》教案3
一、教材分析
冪函數(shù)是學生在系統(tǒng)學習了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本初等函數(shù)。是對函數(shù)概念及性質(zhì)的應(yīng)用,能進一步培養(yǎng)利用函數(shù)的性質(zhì)(定義域、值域、圖像、奇偶性、單調(diào)性)研究一個函數(shù)的意識。因而本節(jié)課更是一個對學生研究函數(shù)的方法和能力的綜合提升。從概念到圖象( ),利用這五個函數(shù)的圖象探究其定義域、值域、奇偶性、單調(diào)性、公共點,概括、歸納冪函數(shù)的性質(zhì),培養(yǎng)學生從特殊到一般再到特殊的一般認知規(guī)律。從教材的整體安排看,學習了解冪函數(shù)是為了讓學生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,以便能將該方法遷移到對其他函數(shù)的研究。
二、教學目標分析
依據(jù)課程標準,結(jié)合學生的認知發(fā)展水平和心理特征,確定本節(jié)課的教學目標如下:
[知識與技能] 使學生了解冪函數(shù)的定義,會畫常見冪函數(shù)的圖象,掌握冪函數(shù)的圖象和性質(zhì),初步學會運用冪函數(shù)解決問題,進一步體會數(shù)形結(jié)合的思想。
[過程與方法] 引入、剖析、定義冪函數(shù)的過程,啟動觀察、分析、抽象概括等思維活動,培養(yǎng)學生的思維能力,體會數(shù)學概念的學習方法;通過運用多媒體的教學手段,引領(lǐng)學生主動探索冪函數(shù)性質(zhì),體會學習數(shù)學規(guī)律的方法,體驗成功的樂趣;對冪函數(shù)的性質(zhì)歸納、總結(jié)時培養(yǎng)學生抽象概括和識圖能力;運用性質(zhì)解決問題時,進一步強化數(shù)形結(jié)合思想。
[情感、態(tài)度與價值觀] 通過生活實例引出冪函數(shù)概念,使學生體會生活中處處有數(shù)學,激發(fā)學生的學習興趣。通過本節(jié)課的學習,使學生進一步加深研究函數(shù)的規(guī)律和方法;提高學生的學習能力;養(yǎng)成積極主動,勇于探索,不斷創(chuàng)新的學習習慣和品質(zhì);樹立學科學,愛科學,用科學的精神。
三、重、難點分析
[教學重點]
(1)冪函數(shù)的定義與性質(zhì);
(2)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)的影響。從知識體系看,前面有指數(shù)函數(shù)與對數(shù)函數(shù)的學習,后面有其他函數(shù)的研究,本節(jié)課的學習具有承上啟下的作用;就知識特點而言,蘊涵豐富的數(shù)學思想方法;就能力培養(yǎng)來說,通過學生對冪函數(shù)性質(zhì)的歸納,可培養(yǎng)學生類比、歸納概括能力,運用數(shù)學語言交流表達的能力。
[教學難點]
(1)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響。
(2)數(shù)形結(jié)合解決大小比較以及求參數(shù)的問題。從學生認知發(fā)展看,他們具備一定的學習新函數(shù)的能力,可以通過學習指數(shù)函數(shù)與對數(shù)函數(shù)的方法來類比,但畢竟冪函數(shù)在三種初等函數(shù)中是最難的,因為它分類的情況很多,且性質(zhì)多而復雜,我采用讓學生自己利用計算機作出函數(shù)的圖像,從中歸納性質(zhì)的.方法來突破難點。
四、學情與教法分析
1. 學情分析
從學生思維特點來和認知結(jié)構(gòu)看,前面學生已經(jīng)學習指數(shù)函數(shù)與對數(shù)函數(shù),對新函數(shù)的學習已經(jīng)有了一定的經(jīng)驗。一方面可以把本節(jié)課與前面的指數(shù)函數(shù)與對數(shù)函數(shù)進行類比學習,但另一方面本節(jié)課分類情況多,性質(zhì)歸納困難,尤其是三個函數(shù)放在一起可能產(chǎn)生混淆。對進入高中半個學期的學生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹?shù)奶攸c,對問題解決的一般性思維過程認識比較模糊。
2. 教法分析
學生思維活躍,求知欲強,但在思維習慣上還有待教師引導從學生原有的知識和能力出發(fā),在教師的帶領(lǐng)下創(chuàng)設(shè)疑問,通過合作交流,共同探索,逐步解決問題。采用引導發(fā)現(xiàn)式的教學方法,充分利用多媒體輔助教學。通過教師點撥,啟發(fā)學生主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現(xiàn)和接受。
3.教學構(gòu)想
新課標的要求是通過實例,了解y=x, , , , 的圖像,了解它們的變化情況。而原數(shù)學教學大綱要求掌握冪函數(shù)的概念及其圖像和性質(zhì),在考查掌握函數(shù)性質(zhì)和運用性質(zhì)解決問題時,所涉及的冪函數(shù)f(x)=xα中 α限于在集合{-2,-1,-,,,1,2,3}中取值。新課標無論從內(nèi)容的容量和難度上都要遠低于舊課標。而蘇教版的教材嚴格按照新課標要求處理此部分內(nèi)容,內(nèi)容體系均未超出課標要求。所以我們應(yīng)以新課標為準繩,控制難度與要求。由于本節(jié)課的難點在于指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響,本身冪函數(shù)比較抽象,所以我采用在多媒體教室讓學生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數(shù)的性質(zhì)。從心理學上講,自己經(jīng)歷知識的發(fā)生發(fā)展過程,印象更深刻,學生容易接受與理解。
五、教具準備
教師準備教科書、多媒體課件,在計算機教室。
六、教學過程
教學 環(huán)節(jié) | 教學設(shè)計 | 設(shè)計 意圖 | |||
教學內(nèi)容 | 教師活動 | 學生活動 | |||
? 問 題 情 景 1 | 我們知道:一定,?的變化而變化,我們建立了指數(shù)函數(shù)?一定,?的變化而變化,我們建立了對數(shù)函數(shù)?一定,?的變化而變化,是不是也應(yīng)該可以確定一個函數(shù)呢? | 打開多媒體課件,帶領(lǐng)大家一起回顧前面的知識點。 | 在老師的引導下,展開思維分析。 | 知識點回顧,揭示函數(shù)之間的聯(lián)系,追求函數(shù)的完美,知識體系的完備性。 | |
? 問 題 情 景 2 | 問題1:如果張紅購買了每千克1元的蔬菜w千克,那么她需要付的錢數(shù)p = w元,這里p是w的函數(shù)。 問題2:如果正方形的邊長為a,那么正方形的面積S = a2,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積V = a3,這里V是a的函數(shù)。 問題4:如果正方形場地的面積為S,那么正方形的邊長a=S?km/s,這里v是t的函數(shù)。 | 引導學生觀察五個有關(guān)冪函數(shù)模型的生活實例,幫助學生歸納這些函數(shù)的共同特征。 | 由于是熟悉的背景,學生求函數(shù)的解析式還是輕松的,只是從中歸納函數(shù)的共同特點有點困難。 | 主要目的是引出五種典型的冪函數(shù),為后面三大類冪函數(shù)的歸納總結(jié)打下基礎(chǔ)。提出日常生活中的問題,學生既容易理解,又可以增加學習的興趣。 | |
得出冪函數(shù)的定義 | 我們把形如:?是實常數(shù)。 ? 判斷下列函數(shù)那些是冪函數(shù): ①y=x-2;②y=2x2;③y=(2x)0.5;④y=2x | 讓學生歸納總結(jié),類比指數(shù)函數(shù)與冪函數(shù),指出形式上的特點:①底數(shù)只能是自變量x,②x前系數(shù)只能為1。 | 觀察、分析,概括。在練習的過程中加深對概念的理解和形式的注意。 | 學生自主探究,培養(yǎng)學生的觀察、概括能力。 | |
建 構(gòu) 數(shù) 學 | 例2、求下列函數(shù)的定義域,判斷它們的奇偶性。 (1) (3)利用Excel作出下列冪函數(shù)的圖象并觀察其特點。 (1)y=x (2)? (3) | 在前面例1的基礎(chǔ)上利用函數(shù)的定義域,列出數(shù)據(jù),先用計算機模擬畫出圖象示范給學生看,讓學生自己動手操作,一邊巡視一邊指導。 同時引導學生觀察、思考填寫表格。啟發(fā)學生類比前面研究指數(shù)和對數(shù)函數(shù)的方法,從特殊到一般,歸納總結(jié)冪函數(shù)的性質(zhì)。 | 學生自己跟著老師的步驟操作,利用計算機作出五種典型函數(shù)的圖象,讓學生觀察和分析所作的圖象,歸納得出圖象特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì)。經(jīng)歷知識發(fā)生過程,性質(zhì)的歸納不斷由學生補充,修改和完善,學會數(shù)學語言的運用與交流,體會合作學習的快樂與成功帶來的成就感。 | 預見到學生對抽象的冪函數(shù)理解比較困難,所以讓學生親身經(jīng)歷知識的發(fā)生發(fā)展過程,印象更加深刻。在歸納總結(jié)的過程中,培養(yǎng)學生研究新函數(shù)從特殊到一般,類比聯(lián)想的數(shù)學方法;積累學生獨立思考與互相合作學習的經(jīng)驗。 | |
歸 ? 納 ? 概 ? 括 | ? | ||||
《冪函數(shù)》教案4
教學目標:
1.使學生理解冪函數(shù)的概念,能夠通過圖象研究冪函數(shù)的性質(zhì);
2.在作冪函數(shù)的圖象及研究冪函數(shù)的性質(zhì)過程中,培養(yǎng)學生的觀察能力,概括總結(jié)的能力;
3.通過對冪函數(shù)的研究,培養(yǎng)學生分析問題的能力.
教學重點:
常見冪函數(shù)的概念、圖象和性質(zhì);
教學難點:
冪函數(shù)的單調(diào)性及其應(yīng)用.
教學方法:
采用師生互動的方式,由學生自我探索、自我分析,合作學習,充分發(fā)揮學生的積極性與主動性,教師利用實物投影儀及計算機輔助教學.
教學過程:
一、問題情境
情境:我們以前學過這樣的函數(shù):=x,=x2,=x1,試作出它們的圖象,并觀察其性質(zhì).
問題:這些函數(shù)有什么共同特征?它們是指數(shù)函數(shù)嗎?
二、數(shù)學建構(gòu)
1.冪函數(shù)的.定義:一般的我們把形如=x(R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是變量,指數(shù)是常數(shù).
2.冪函數(shù)=x 圖象的分布與 的關(guān)系:
對任意的 R,=x在第I象限中必有圖象;
若=x為偶函數(shù),則=x在第II象限中必有圖象;
若=x為奇函數(shù),則=x在第III象限中必有圖象;
對任意的 R,=x的圖象都不會出現(xiàn)在第VI象限中.
3.冪函數(shù)的性質(zhì)(僅限于在第一象限內(nèi)的圖象):
。1)定點:>0時,圖象過(0,0)和(1,1)兩個定點;
≤0時,圖象過只過定點(1,1).
。2)單調(diào)性:>0時,在區(qū)間[0,+)上是單調(diào)遞增;
<0時,在區(qū)間(0,+)上是單調(diào)遞減.
三、數(shù)學運用
例1 寫出下列函數(shù)的定義域,并判斷它們的奇偶性
(1)= ; (2)= ;(3)= ;(4)= .
例2 比較下列各題中兩個值的大。
。1)1.50.5與1.70.5 (2)3.141與π1
(3)(-1.25)3與(-1.26)3(4)3 與2
例3 冪函數(shù)=x;=xn;=x1與=x在第一象限內(nèi)圖象的排列順序如圖所示,試判斷實數(shù),n與常數(shù)-1,0,1的大小關(guān)系.
練習:(1)下列函數(shù):①=0.2x;②=x0.2;
、郏絰3;④=3x2.其中是冪函數(shù)的有 (寫出所有冪函數(shù)的序號).
。2)函數(shù) 的定義域是 .
(3)已知函數(shù) ,當a= 時,f(x)為正比例函數(shù);
當a= 時,f(x)為反比例函數(shù);當a= 時,f(x)為二次函數(shù);
當a= 時,f(x)為冪函數(shù).
。4)若a= ,b= ,c= ,則a,b,c三個數(shù)按從小到大的順序排列為 .
四、要點歸納與方法小結(jié)
1.冪函數(shù)的概念、圖象和性質(zhì);
2.冪值的大小比較方法.
五、作業(yè)
課本P90-2,4,6.
《冪函數(shù)》教案5
教學目標
1、使學生掌握的概念,圖象和性質(zhì)。
。1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
。3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。
教學建議
教材分析
。1)x是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
。3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
。1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
。2)對底數(shù)x的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
教學設(shè)計示例
課題
教學目標
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。x通過的圖象和性質(zhì)的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3。x通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。
教學重點和難點
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
教學用具
投影儀
教學方法
啟發(fā)討論研究式
教學過程
一、x引入新課
我們前面學習了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個……一個這樣的細胞分裂x次后,得到的細胞分裂的個數(shù)x與x之間,構(gòu)成一個函數(shù)關(guān)系,能寫出x與x之間的函數(shù)關(guān)系式嗎?
由學生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
。1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
。2)關(guān)于的定義域x(板書)
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
。3)關(guān)于是否是的判斷(板書)
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
。4)x,x
。5)x。
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導下的列表描點法。
2、草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學生來選擇,應(yīng)讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的'描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
。1)無論x為何值,x都有定義域為x,值域為x,都過點x。
。2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
。3)x時,x,x x時,x。
總結(jié)之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小
。1)x與x;x(2)x與x;
。3)x與1x。(板書)
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且 教師最后再強調(diào)過程必須寫清三句話: 。1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。 。2)x自變量的大小比較。 。3)x函數(shù)值的大小比較。 后兩個題的過程略。要求學生仿照第(1)題敘述過程。 例2。比較下列各組數(shù)的大小 。1)x與x;x(2)x與x ; (3)x與x。(板書) 先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關(guān),可以用1來起橋梁作用) 最后由學生說出x>1,<1。 解決后由教師小結(jié)比較大小的方法 。1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的) 。2)x搭橋比較法:x用特殊的數(shù)1或0。 四、鞏固練習 練習:比較下列各組數(shù)的大。ò鍟 (1)x與x x(2)x與x; 。3)x與x;x(4)x與x。解答過程略 五、小結(jié) 1、的概念 2、的圖象和性質(zhì) 3、簡單應(yīng)用 六、板書設(shè)計 1、教材分析 冪函數(shù)是江蘇教育出版社普通高中課程標準實驗教科書數(shù)學(必修 1)第二章第四節(jié)的內(nèi)容。該教學內(nèi)容在人教版試驗修訂本(必修)中已被刪去。標準將該內(nèi)容重新提出,正是考慮到冪函數(shù)在實際生活的應(yīng)用。故在教學過程及后繼學習過程中,應(yīng)能夠讓學生體會其實際應(yīng)用!稑藴省穼绾瘮(shù)限定為五個具體函數(shù),通過研究它們來了解冪函數(shù)的性質(zhì)。其中,學生在初中已經(jīng)學習了 y=x、y=x 2、y=x-1 等三個簡單的冪函數(shù),對它們的圖象和性質(zhì)已經(jīng)有了一定的感性認識,F(xiàn)在明確提出冪函數(shù)的概念,有助于學生形成完整的知識結(jié)構(gòu)。學生已經(jīng)了解了函數(shù)的基本概念、性質(zhì)和圖象,研究了兩個特殊函數(shù):指數(shù)函數(shù)和對數(shù)函數(shù),對研究函數(shù)已經(jīng)有了基本思路和方法。因此,教材安排學習冪函數(shù),除內(nèi)容本身外,掌握研究函數(shù)的一般思想方法是另一目的,另外應(yīng)讓學生了解利用信息技術(shù)來探索函數(shù)圖象及性質(zhì)是一個重要途徑。該內(nèi)容安排一課時。 2、設(shè)計理念 注重發(fā)展學生的創(chuàng)新意識。學生的數(shù)學學習活動不應(yīng)只限于接受、記憶、模仿和練習,倡導學生積極主動探索、動手實踐與相互合作交流的數(shù)學學習方式。這種方式有助于發(fā)揮學生學習主動性,使學生的學習過程成為在教師引導下的“再創(chuàng)造”過程。我們應(yīng)積極創(chuàng)設(shè)條件,讓學生體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,發(fā)展他們的創(chuàng)新意識。 注重提高學生數(shù)學思維能力。課堂教學是促進學生數(shù)學思維能力發(fā)展的主陣地。問題解決是培養(yǎng)學生思維能力的主要途徑。所設(shè)計的問題應(yīng)有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等教學活動。內(nèi)容的呈現(xiàn)應(yīng)采用不同的表達方式,以滿足多樣化的學習需求。伴隨新的問題發(fā)現(xiàn)和問題解決后成功感的滿足,由此刺激學生非認知深層系統(tǒng)的良性運行,使其產(chǎn)生“樂學”的余味,學生學習的積極性與主動性在教學中便自發(fā)生成。本節(jié)主要安排應(yīng)用類比法進行探討,加深學生對類比法的體會與應(yīng)用。 注重學生多層次的發(fā)展。在問題解決的探究過程中應(yīng)體現(xiàn)“以人為本”,充分體現(xiàn)“人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學”,“不同的人在數(shù)學上得到不同的發(fā)展”的教學理念。有意義的數(shù)學學習必須建立在學生的主觀愿望和知識經(jīng)驗基礎(chǔ)之上,而學生的基礎(chǔ)知識和學習能力是多層次的,所以設(shè)計的問題也應(yīng)有層次性,使各層次學生都得到發(fā)展。 注重信息技術(shù)與數(shù)學課程的整合。高中數(shù)學課程應(yīng)盡量使用科學型計算器,各種數(shù)學教育技術(shù)平臺,加強數(shù)學教學與信息技術(shù)的結(jié)合,鼓勵學生運用計算機、計算器等進行探索和發(fā)現(xiàn)。 另外,在數(shù)學教學中,強調(diào)數(shù)學本質(zhì)的同時,也讓學生通過適度的形式化,較好的理解和使用數(shù)學概念、性質(zhì)。 3、教學目標 、伲R目標 。1)了解冪函數(shù)的概念; 。2)會畫簡單冪函數(shù)的圖象,并能根據(jù)圖象得出這些函數(shù)的性質(zhì); 。3)了解冪函數(shù)隨冪指數(shù)改變的性質(zhì)變化情況。 、冢芰δ繕 在探究冪函數(shù)性質(zhì)的活動中,培養(yǎng)學生觀察和歸納能力,培養(yǎng)學生數(shù)形結(jié)合的意識和思想。 、郏楦心繕 通過師生、生生彼此之間的討論、互動,培養(yǎng)學生合作、交流、探究的意識品質(zhì),同時 讓學生在探索、解決問題過程中,獲得學習的成就感。 4、教學方法和教具的選擇 基于對課程理念的理解和對教材的分析,運用問題情境可以使學生較快的進入數(shù)學知識情景,使學生對數(shù)學知識結(jié)構(gòu)作主動性的擴展,通過問題的導引,學生對數(shù)學問題探究,進行數(shù)學建構(gòu),并能運用數(shù)學知識解決問題,讓學生有運用數(shù)學成功的體驗。本課采用教師在學生原有的知識經(jīng)驗和方法上,引導學生提出問題、解決問題的教學方法,體現(xiàn)以學生為主體,教師主導作用的教學思想。 教具:多媒體。制作多媒體課件以提高教學效率。 5、教學重點和難點 重點是從具體冪函數(shù)歸納認識冪函數(shù)的一些性質(zhì)并作簡單應(yīng)用。 難點是引導學生概括出冪函數(shù)性質(zhì)。 6、教學過程與操作設(shè)計: 情景一 我們來看看由 8、2、3、13這四個數(shù); 問題 1:運用數(shù)學符號可組成哪些式? 我們知道: N =a b 如果 a 一定,N 隨 b 的變化而變化,我們建立了指數(shù)函數(shù) y=a x ; 如果 a 一定,b 隨 N 的變化而變化,我們建立了對數(shù)函數(shù) y=log a x。 問題 2:如果為定值,隨的變化而變化,是不是我們也應(yīng)該可以建立一個函數(shù)呢?函數(shù)形式是什么? 設(shè)計意圖:通過情景一達到復習舊知指數(shù)函數(shù)和對數(shù)函數(shù),分析三種運算間的緊密聯(lián)系。繼而引入新課-----冪函數(shù)。 情景二 寫出下列關(guān)于實際問題的函數(shù)解析式: 、僬叫芜呴L為 a,面積 S; ②正方體棱長為 a,體積 V; ③正方形面積為 S,邊長 a; 、苣橙蓑T車 t 秒內(nèi)勻速前進了 1m,騎車速度為 v; 、菀晃矬w位移為 S 與位移時間為 t,速度 1m/s. 問題 3:以上問題中的函數(shù)有什么共同特征? 設(shè)計意圖: 情景二是學過的幾個特殊函數(shù),通過分析其共同點,得出冪函數(shù)的定義,并從中認識到冪函數(shù)與前面學過的正比例、反比例、二次函數(shù)間的關(guān)系。 1.定義:(板書)一般地,形如 y x 的函數(shù)稱為冪函數(shù),其中 x 是自變量, 為常數(shù)。 活動一:嘗試練習 練習1.下面幾個函數(shù)中,哪幾個函數(shù)是冪函數(shù)? (1)12y x 。2)22 y x 。3)32 y x 。4)2y x 。5)2y x 練習2.(1)已知冪函數(shù)的圖像過點(3,27),試求這個函數(shù)的解析式; 。2)已知 22 12m mf x m m x是冪函數(shù),求實數(shù)m的值. 答案:(1)3y x,(2)1 2 m 。 小結(jié)與反思: 設(shè)計意圖: 練習1、2 是為了加深對冪函數(shù)概念的理解。 活動二:利用描點法作出下列函數(shù)的圖象,并觀察圖象,分組討論,探究冪函數(shù)的圖象的變化規(guī)律和性質(zhì),并展示各自的.結(jié)論進行交流評析,并填表。 (1)y=x; (2)2x y ; 。3)3x y ; 。4)21x y ; 。5)1 x y . y=x 2x y 3x y 21x y 1 x y 定義域 值域 奇偶性 單調(diào)性 定點 問題 3.由具體冪函數(shù)的性質(zhì),你可以歸納出一般的冪函數(shù)的性質(zhì)嗎? 設(shè)計意圖: 引導學生觀察圖象,歸納概括冪函數(shù)的圖象變化規(guī)律和性質(zhì)。在觀察中提煉特征,在中發(fā)現(xiàn)規(guī)律。 活動三:鞏固練習練習 3.作出下列函數(shù)的圖象 4 3 2 333 5 3 2, , , ,.y x y x y x y x y x 小結(jié)與反思: 設(shè)計意圖: 練習3 是為了加深學生對圖像中指數(shù)變化規(guī)律的掌握,教會學生用特殊值法求解。 練習4.用不等號填空: 。1)1.30.5 1.5 0.3 ; 。2)5.1-2 5.09-2 ; 。3)-1.79 1/4 -1.81 1/4 ; (4)233.8 253.9 ; (5)1.43 1.55 ; 。6)若 3 a >2 a,則 a 0; 。7)3 24 32 33 4 。 小結(jié)與反思: 設(shè)計意圖: 練習4 是為了鞏固函數(shù)的單調(diào)性的應(yīng)用。函數(shù)單調(diào)性是判別大小的重要依據(jù)。 活動四:例題講解 例 1.若冪函數(shù) 22 2 31m mf x m m x 在區(qū)間(0,+∞)上是增函數(shù),求實數(shù) m的集合。 例 2、已知冪函數(shù) 22 3 m mf x x (m∈Z)為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增 函數(shù). 。1)求函數(shù) f x 的解析式; 。2)設(shè)函數(shù) 2 1 g x f x qx q ,若 0 g x 對任意 x∈[-1,1]恒成立,求實數(shù) q 的取值范圍. 設(shè)計意圖: 例 1 是為了加強冪函數(shù)的單調(diào)性的應(yīng)用,例 2 是較綜合的問題,把函數(shù)的單調(diào)性和奇偶性綜合在一起,并且還和二次函數(shù)的恒成立問題結(jié)合,培養(yǎng)學生的綜合問題分析、理解能力。 活動五:探究提高 若3 32 2(2 1)(1)a a ,求實數(shù) a 的取值范圍。 變式:若1 13 3(2)(1 2)a a ,求實數(shù) a 的取值范圍。 設(shè)計意圖:本題主要是為了培養(yǎng)學生思維的發(fā)散性和周密性。 課堂小結(jié): 1、課本第 87 頁第 2、3 題。 設(shè)計意圖:數(shù)形結(jié)合是學習函數(shù)的基本方法,本節(jié)課的核心內(nèi)容都可以借助此圖掌握。 2、在同一坐標系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律? 。1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1); 。2)如果 >0,則冪函數(shù)的圖像通過原點,并在區(qū)間[0,+∞)上是增函數(shù)。 。3)如果 <0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當 x 從右邊趨向于原點時,圖像在 y 軸右方無限地趨近y 軸;當 x 趨向于+∞時,圖像在 x 軸上方無限地趨近x 軸。 設(shè)計意圖:培養(yǎng)學生用圖像研究函數(shù)的意識。 課外活動 利用計算機探索一般冪函數(shù)的圖象隨的變化規(guī)律。 設(shè)計意圖:培養(yǎng)學生探究的意識和精神,體會人機對話的感受。 【教學目標】 。ㄒ唬┲R與技能 1、了解冪函數(shù)的概念,會畫冪函數(shù)y?x,y?x,y?x,y?x,y?x的圖象,并能結(jié)合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質(zhì)。 2、了解幾個常見的冪函數(shù)的性質(zhì)。 。ǘ┻^程與方法 1、通過觀察、總結(jié)冪函數(shù)的性質(zhì),提高概括抽象和識圖能力。 2、體會數(shù)形結(jié)合的思想。 。ㄈ┣楦袘B(tài)度與價值觀 1、通過生活實例引出冪函數(shù)的概念,體會生活中處處有數(shù)學,樹立學以致用的意識。 2、通過合作學習,增強合作意識。 【教學重點】 冪函數(shù)的定義 【教學難點】 會求冪函數(shù)的定義域,會畫簡單冪函數(shù)的圖象、 【教學方法】 啟發(fā)式、講練結(jié)合教學過程 一、復習舊課 二、創(chuàng)設(shè)情景,引入新課 問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系? 。ǹ偨Y(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù)) 問題2:如果正方形的邊長為a,那么正方形的面積S?a2,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積V?a3,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長a?S12,這里a是S的函數(shù) 問題5:如果某人ts內(nèi)騎車行進了1km,那么他騎車的速度V?t?1km/s,這里v是t的函數(shù)。 以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題) 二、新課講解 。ㄒ唬﹥绾瘮(shù)的'概念 如果設(shè)變量為x,函數(shù)值為y,你能根據(jù)以上的生活實例得到怎樣的一些具體的函數(shù)式? 這里所得到的函數(shù)是冪函數(shù)的幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎?冪函數(shù)的定義:一般地,我們把形如y?x?的函數(shù)稱為冪函數(shù)(power function),其中x是自變量,?是常數(shù)。 【探究一】冪函數(shù)有什么特點? 結(jié)論:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)試一試:判斷下列函數(shù)那些是冪函數(shù)練習1判斷下列函數(shù)是不是冪函數(shù)3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、 根據(jù)你的學習經(jīng)歷,你覺得求一個函數(shù)的定義域應(yīng)該從哪些方面來考慮? 。ǘ呵髢绾瘮(shù)的定義域 1.什么是函數(shù)的定義域? 函數(shù)自變量的取值范圍叫做函數(shù)的定義域2.求函數(shù)的定義域時依據(jù)哪些原則?(1)解析式為整式時,x取值是全體實數(shù)。 2 (2)解析式是分式時,x取值使分母不等于零。 (3)解析式為偶次方根時,x取值使被開方數(shù)取非負實數(shù)。 (4)以上幾種情況同時出現(xiàn)時,x取各部分的交集。 (5)當解析式涉及到具體應(yīng)用題時,x取值除了使解析式有意義還要使實際問題有意義。例1寫出下列函數(shù)的定義域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函數(shù)y=x3的定義域為R; 1(2)函數(shù)y=x2,即y=x,定義域為[0,+∞); 12(3)函數(shù)y=x-,即y=2,定義域為(-∞,0)∪(0,+∞); x3-1(4)函數(shù)y=x2,即y=,其定義域為(0,+∞)、 3 x練習2求下列函數(shù)的定義域: 11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、 (三)、幾個常見冪函數(shù)的圖象和性質(zhì) 我們已經(jīng)學習了冪函數(shù)(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;請同學們在同一坐標系中畫出它們的圖象.性質(zhì):冪函數(shù)隨冪指數(shù)α的取值不同,它們的性質(zhì)和圖象也不盡相同,但也有一些共性,例如,所有的冪函數(shù)都通過點(1,1),都經(jīng)過第一象限;當??0是,圖象過點(1,1),(0,0),且在第一象限隨x的增大而上升,函數(shù)在區(qū)間?0,???上是單調(diào)增函數(shù)。??0時冪函數(shù)y?x?圖象的基本特征:過點(1,1),且在第一象限隨x的增大而下降,函數(shù)在區(qū)間(0,??)上是單調(diào)減函數(shù),且向右無限接近X軸,向上無限接 近Y軸。 。ㄋ模┱n堂小結(jié) 。ㄎ澹┱n后作業(yè) 1、教材P 100,練習A第1題、 12在同一坐標系中畫出函數(shù)y=x與y=x2的圖象,并指數(shù)這兩個函數(shù)各有什么性質(zhì)以 3及它們的圖象關(guān)系 【《冪函數(shù)》教案】相關(guān)文章: 教案教案及反思04-18 教案中班教案02-23 小班教案小班教案03-10 小班教案安全教案03-16 教案幼兒中班教案02-15 小班美術(shù)教案羊毛教案06-08 語言類教案中班教案02-27 科學教案模板教案03-01 小班教案小班教案7篇03-10《冪函數(shù)》教案6
《冪函數(shù)》教案7