亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

高中數(shù)學教案

時間:2023-01-31 15:20:39 教案大全 我要投稿

高中數(shù)學教案15篇

  作為一名優(yōu)秀的教育工作者,常常要寫一份優(yōu)秀的教案,教案有助于順利而有效地開展教學活動。來參考自己需要的教案吧!以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學教案15篇

高中數(shù)學教案1

  教學準備

  1.教學目標

  1、知識與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

  2、過程與方法:

 。1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應的語言來刻畫函數(shù),體會對應關(guān)系在刻畫函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

 。3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

  3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.

  教學重點/難點

  重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);

  難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學用具

  多媒體

  4.標簽

  函數(shù)及其表示

  教學過程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:

  (1)炮彈的射高與時間的變化關(guān)系問題;

  (2)南極臭氧空洞面積與時間的變化關(guān)系問題;

 。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.

  3、分析、歸納以上三個實例,它們有什么共同點;

  4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關(guān)系;

  5、根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

 。ǘ┭刑叫轮

  1、函數(shù)的有關(guān)概念

 。1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

  ①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

 。2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對應關(guān)系和值域

  (3)區(qū)間的概念

 、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

  (4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?

  通過三個已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.

  師:歸納總結(jié)

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

 。2)求f(-3),f()的值;

 。3)當a>0時,求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的'定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導學生小結(jié)幾類函數(shù)的定義域:

 。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

 。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.

 。4)如果f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

 。5)滿足實際問題有意義.

  鞏固練習:課本P19第1

  2、如何判斷兩個函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  2兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結(jié)

 、購木唧w實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

 。ㄎ澹┰O(shè)置問題,留下懸念

  1、課本P24習題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關(guān)系.

  課堂小結(jié)

高中數(shù)學教案2

  第一章:空間幾何體

  1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

  一、教學目標

  1.知識與技能

 。1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

  (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

 。4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

  2.過程與方法

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3.情感態(tài)度與價值觀

 。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點、難點

  重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

  難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

  (2)實物模型、投影儀

  四、教學思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。

 。ǘ、研探新知

  1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

  2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。

  8.引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。

  9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

  1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2.棱柱的`何兩個平面都可以作為棱柱的底面嗎?

  3.課本P8,習題1.1A組第1題。

  4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7練習1、2(1)(2)

  課本P8習題1.1第2、3、4題

  五、歸納整理

  由學生整理學習了哪些內(nèi)容

  六、布置作業(yè)

  課本P8練習題1.1B組第1題

  課外練習課本P8習題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時)

  一、教學目標

  1.知識與技能

 。1)掌握畫三視圖的基本技能

 。2)豐富學生的空間想象力

  2.過程與方法

  主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀

 。1)提高學生空間想象力

 。2)體會三視圖的作用

  二、教學重點、難點

  重點:畫出簡單組合體的三視圖

  難點:識別三視圖所表示的空間幾何體

  三、學法與教學用具

  1.學法:觀察、動手實踐、討論、類比

  2.教學用具:實物模型、三角板

  四、教學思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭開課題

  “橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

  在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

 。ǘ⿲嵺`動手作圖

  1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結(jié)果并討論;

  2.教師引導學生用類比方法畫出簡單組合體的三視圖

 。1)畫出球放在長方體上的三視圖

 。2)畫出礦泉水瓶(實物放在桌面上)的三視圖

  學生畫完后,可把自己的作品展示并與同學交流,總結(jié)自己的作圖心得。

  作三視圖之前應當細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

  (1)投影出示圖片(課本P10,圖1.2-3)

  請同學們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫出圓臺的三視圖嗎?

 。3)三視圖對于認識空間幾何體有何作用?你有何體會?

  教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。

  4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

  (三)鞏固練習

  課本P12練習1、2P18習題1.2A組1

 。ㄋ模w納整理

  請學生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)課外練習

  1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

  1.2.2空間幾何體的直觀圖(1課時)

  一、教學目標

  1.知識與技能

 。1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。

 。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

  2.過程與方法

  學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

  3.情感態(tài)度與價值觀

  (1)提高空間想象力與直觀感受。

  (2)體會對比在學習中的作用。

  (3)感受幾何作圖在生產(chǎn)活動中的應用。

  二、教學重點、難點

  重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

  三、學法與教學用具

  1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

  2.教學用具:三角板、圓規(guī)

  四、教學思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱

  把實物圓柱放在講臺上讓學生畫。

  2.學生畫完后展示自己的結(jié)果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。

 。ǘ┭刑叫轮

  1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。

  畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。

  練習反饋

  根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

  2.例2,用斜二測畫法畫水平放置的圓的直觀圖

  教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。

  教師組織學生思考、討論和交流,如何構(gòu)造出需要的一些點,與學生共同完成例2并詳細板書畫法。

  3.探求空間幾何體的直觀圖的畫法

 。1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

  教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

 。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

  5.鞏固練習,課本P16練習1(1),2,3,4

  三、歸納整理

  學生回顧斜二測畫法的關(guān)鍵與步驟

  四、作業(yè)

  1.書畫作業(yè),課本P17練習第5題

  2.課外思考課本P16,探究(1)(2)

高中數(shù)學教案3

  教學目標

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應;

 。2)能準確使用數(shù)學符號表示映射, 把握映射與一一映射的區(qū)別;

 。3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過程中,培養(yǎng)學生的觀察,比較和歸納的能力.

  3.通過映射概念的學習,逐步提高學生對知識的探究能力.

  教學建議

  教材分析

 。1)知識結(jié)構(gòu)

  映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

 。2)重點,難點分析

  本節(jié)的教學重點和難點是映射和一一映射概念的形成與認識.

 、儆成涞母拍钍潜容^抽象的`概念,它是在初中所學對應的基礎(chǔ)上發(fā)展而來.教學中應特別強調(diào)對應集合 B中的唯一這點要求的理解;

  映射是學生在初中所學的對應的基礎(chǔ)上學習的,對應本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿足一對一和多對一的對應就能體現(xiàn)出“任一對唯一”.

 、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學習中是比較困難的.

  教法建議

  (1)在映射概念引入時,可先從學生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發(fā)現(xiàn)其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.

  (2)在剛開始學習映射時,為了能讓學生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數(shù)學符號表示映射,比如:

 。3)對于學生層次較高的學?梢栽诮o出定義后讓學生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發(fā)現(xiàn)映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發(fā)現(xiàn)映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

 。4)關(guān)于求象和原象的問題,應在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認識.

  (5)在教學方法上可以采用啟發(fā),討論的形式,讓學生在實例中去觀察,比較,啟發(fā)學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結(jié),教師要起到點撥和深化的作用.

  教學設(shè)計方案

  2.1映射

  教學目標(1)了解映射的概念,象與原象及一一映射的概念.

  (2)在概念形成過程中,培養(yǎng)學生的觀察,分析對比,歸納的能力.

  (3)通過映射概念的學習,逐步提高學生的探究能力.

  教學重點難點::映射概念的形成與認識.

  教學用具:實物投影儀

  教學方法:啟發(fā)討論式

  教學過程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

  二、新課

  在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關(guān)系,而映射是重點研究兩個集合的元素與元素之間的對應關(guān)系.這要先從我們熟悉的對應說起(用投影儀打出一些對應關(guān)系,共6個)

  我們今天要研究的是一類特殊的對應,特殊在什么地方呢?

  提問1:在這些對應中有哪些是讓A中元素就對應B中唯一一個元素?

  讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)

  提問2:能用自己的語言描述一下這幾個對應的共性嗎?

  經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學生完成,教師做必要的補充)

高中數(shù)學教案4

  1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關(guān)系,學習上你認真刻苦,也能及時的完成作業(yè),但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關(guān)注學習成績對你才是更有意義的事!

  2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關(guān)系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的'學科學習中,也一定會收獲很多的!加油吧!

  3. 你能嚴格遵守校規(guī),上課認真聽講,作業(yè)完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結(jié)果,而且你還是一個愿意動腦筋的好學生,如果繼續(xù)保持下去定會取得驕人的成績!

  4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業(yè)時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業(yè)的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

  5. 雖然你個頭小,但每次你領(lǐng)讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會更出色的!

  6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數(shù)你最有感情。中午你還主動給老師捶背,真是個會關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

  7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

  8. 許麗君——你思想上進,踏實穩(wěn)重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發(fā)揮你的聰明才智,進一步激發(fā)活力,提高學習效率,持之以恒,美好的明天屬于你!

  9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

  10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優(yōu),熱愛班級,關(guān)愛同學,勤奮好學,思維敏捷,成績優(yōu)秀。愿你扎實各科基礎(chǔ),堅持不懈,!一定能考上重點! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高中數(shù)學教案5

  教學目標:

  1、理解并掌握曲線在某一點處的切線的概念;

  2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化

  問題的能力及數(shù)形結(jié)合思想。

  教學重點:

  理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。

  教學難點:

  用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。

  教學過程:

  一、問題情境

  1、問題情境。

  如何精確地刻畫曲線上某一點處的變化趨勢呢?

  如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。

  如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。

  因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動。

  如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,

 。1)試判斷哪一條直線在點P附近更加逼近曲線;

 。2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 。3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的'直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  三、數(shù)學運用

  例1 試求在點(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;

  當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。

  練習 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點處的切線斜率的一般步驟:

 。1)找到定點P的坐標,設(shè)出動點Q的坐標;

 。2)求出割線PQ的斜率;

 。3)當時,割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  解 設(shè)

  所以,當無限趨近于0時,無限趨近于點處的切線的斜率。

  變式訓練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學教案6

  三維目標:

  1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟;

  2、過程與方法:

  (1)能夠從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題;

  (2)在解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。

  3、情感態(tài)度與價值觀:通過對現(xiàn)實生活和其他學科中統(tǒng)計問題的提出,體會數(shù)學知識與現(xiàn)實世界及各學科知識之間的聯(lián)系,認識數(shù)學的重要性。

  4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數(shù)法的步驟,并能靈活應用相關(guān)知識從總體中抽取樣本。

  教學方法:

  講練結(jié)合法

  教學用具:

  多媒體

  課時安排:

  1課時

  教學過程:

  一、問題情境

  假設(shè)你作為一名食品衛(wèi)生工作人員,要對某食品店內(nèi)的一批小包裝餅干進行衛(wèi)生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?

  二、探究新知

  1、統(tǒng)計的有關(guān)概念:總體:在統(tǒng)計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數(shù)目叫做樣本的容量、統(tǒng)計的基本思想:用樣本去估計總體、

  2、簡單隨機抽樣的概念一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。

  下列抽樣的方式是否屬于簡單隨機抽樣?為什么?

  (1)從無限多個個體中抽取50個個體作為樣本。

  (2)箱子里共有100個零件,從中選出10個零件進行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個零件進行質(zhì)量檢驗后,再把它放回箱子。

  (3)從8臺電腦中,不放回地隨機抽取2臺進行質(zhì)量檢查(假設(shè)8臺電腦已編好號,對編號隨機抽取)

  3、常用的簡單隨機抽樣方法有:

  (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

  思考?你認為抽簽法有什么優(yōu)點和缺點:當總體中的個體數(shù)很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學出來做游戲,請設(shè)計一個抽取的方法,要使得每位同學被抽到的機會相等。

  分析:可以把57位同學的學號分別寫在大小,質(zhì)地都相同的'紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續(xù)取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。

  (2)隨機數(shù)法的定義:利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣,叫隨機數(shù)表法,這里僅介紹隨機數(shù)表法。怎樣利用隨機數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗,利用隨機數(shù)表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。

  第二步,在隨機數(shù)表中任選一個數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個三位數(shù)785,由于785<799,說明號碼785在總體內(nèi),將它取出;

  繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。

  三、課堂練習

  四、課堂小結(jié)

  1、簡單隨機抽樣的概念一般地,設(shè)一個總體的個體數(shù)為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。

  2、簡單隨機抽樣的方法:抽簽法隨機數(shù)表法

  五、課后作業(yè)

  P57練習1、2

  六、板書設(shè)計

  1、統(tǒng)計的有關(guān)概念

  2、簡單隨機抽樣的概念

  3、常用的簡單隨機抽樣方法有:(1)抽簽法(2)隨機數(shù)表法

  4、課堂練習

高中數(shù)學教案7

  教學目標

  (1)了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

 。2)了解線性規(guī)劃問題的圖解法,并能應用它解決一些簡單的實際問題;

 。3)培養(yǎng)學生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學思想,提高學生“建!焙徒鉀Q實際問題的能力;

 。4)結(jié)合教學內(nèi)容,培養(yǎng)學生學習數(shù)學的興趣和“用數(shù)學”的意識,激勵學生勇于創(chuàng)新.

  重點難點

  理解二元一次不等式表示平面區(qū)域是教學重點。

  如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學難點。

  教學步驟

 。ㄒ唬┮胄抡n

  我們已研究過以二元一次不等式組為約束條件的二元線性目標函數(shù)的'線性規(guī)劃問題。那么是否有多個兩個變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識來解決呢?

高中數(shù)學教案8

  教學目的:

  (1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學生初步了解“屬于”關(guān)系的意義

  (3)使學生初步了解有限集、無限集、空集的意義

  教學重點:集合的基本概念及表示方法

  教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

  授課類型:新授課

  課時安排:1課時

  教 具:多媒體、實物投影儀

  內(nèi)容分析:

  集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的'例子。

  這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。

  教學過程:

  一、復習引入:

  1、簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

 。3)集合中元素的特性是什么?

  (一)集合的有關(guān)概念:

  由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

  定義:一般地,某些指定的對象集在一起就成為一個集合.

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

 。2)元素:集合中每個對象叫做這個集合的元素

  2、常用數(shù)集及記法

 。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,

  (2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集 記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合 記作Z ,

 。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

  (5)實數(shù)集:全體實數(shù)的集合 記作R

  注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

 。2)非負整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒有重復

  (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的開口方向,不能把a∈A顛倒過來寫

  三、練習題:

  1、教材P5練習1、2

  2、下列各組對象能確定一個集合嗎?

 。1)所有很大的實數(shù) (不確定)

  (2)好心的人 (不確定)

 。3)1,2,2,3,4,5.(有重復)

  3、設(shè)a,b是非零實數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

  4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )

  (A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素

  5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

 。1) 當x∈N時, x∈G;

 。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整數(shù),

  ∴ = 不一定屬于集合G

  四、小結(jié):本節(jié)課學習了以下內(nèi)容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無序性

  3、常用數(shù)集的定義及記法

高中數(shù)學教案9

  (一)教學具準備

  直尺,投影儀.

 。ǘ┙虒W目標

  1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.

  2.會求含有、的三角式的定義域.

 。ㄈ┙虒W過程

  1.設(shè)置情境

  研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).

  2.探索研究

  師:同學們回想一下,研究一個函數(shù)常要研究它的哪些性質(zhì)?

  生:定義域、值域,單調(diào)性、奇偶性、等等.

  師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)

  師:請同學看投影,大家仔細觀察一下正弦、余弦曲線的圖像.

  師:請同學思考以下幾個問題:

 。1)正弦、余弦函數(shù)的.定義域是什么?

 。2)正弦、余弦函數(shù)的值域是什么?

 。3)他們最值情況如何?

 。4)他們的正負值區(qū)間如何分?

 。5)的解集如何?

  師生一起歸納得出:

  (1)正弦函數(shù)、余弦函數(shù)的定義域都是.

  (2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.

 。3)取最大值、最小值情況:

  正弦函數(shù),當時,()函數(shù)值取最大值1,當時,()函數(shù)值取最小值-1.

  余弦函數(shù),當,()時,函數(shù)值取最大值1,當,()時,函數(shù)值取最小值-1.

 。4)正負值區(qū)間:

  ()

 。5)零點:()

 。ǎ

  3.例題分析

  【例1】求下列函數(shù)的定義域、值域:

 。1);(2);(3).

  解:(1),

 。2)由()

  又∵,∴

  ∴定義域為(),值域為.

 。3)由(),又由

  ∴

  ∴定義域為(),值域為.

  指出:求值域應注意用到或有界性的條件.

  【例2】求下列函數(shù)的最大值,并求出最大值時的集合:

 。1),;(2),;

 。3)(4).

  解:(1)當,即()時,取得最大值

  ∴函數(shù)的最大值為2,取最大值時的集合為.

 。2)當時,即()時,取得最大值.

  ∴函數(shù)的最大值為1,取最大值時的集合為.

 。3)若,,此時函數(shù)為常數(shù)函數(shù).

  若時,∴時,即()時,函數(shù)取最大值,

  ∴時函數(shù)的最大值為,取最大值時的集合為.

  (4)若,則當時,函數(shù)取得最大值.

  若,則,此時函數(shù)為常數(shù)函數(shù).

  若,當時,函數(shù)取得最大值.

  ∴當時,函數(shù)取得最大值,取得最大值時的集合為;當時,函數(shù)取得最大值,取得最大值時的集合為,當時,函數(shù)無最大值.

  指出:對于含參數(shù)的最大值或最小值問題,要對或的系數(shù)進行討論.

  思考:此例若改為求最小值,結(jié)果如何?

  【例3】要使下列各式有意義應滿足什么條件?

 。1);(2).

  解:(1)由,

  ∴當時,式子有意義.

 。2)由,即

  ∴當時,式子有意義.

  4.演練反饋(投影)

  (1)函數(shù),的簡圖是()

  (2)函數(shù)的最大值和最小值分別為()

  A.2,-2 B.4,0 C.2,0 D.4,-4

 。3)函數(shù)的最小值是()

  A.B.-2 C.D.

  (4)如果與同時有意義,則的取值范圍應為()

  A.B.C.D.或

  (5)與都是增函數(shù)的區(qū)間是()

  A.,B.,

  C.,D.,

 。6)函數(shù)的定義域________,值域________,時的集合為_________.

  參考答案:1.B 2.B 3.A 4.C 5.D

  6.;;

  5.總結(jié)提煉

  (1),的定義域均為.

 。2)、的值域都是

 。3)有界性:

  (4)最大值或最小值都存在,且取得極值的集合為無限集.

  (5)正負敬意及零點,從圖上一目了然.

 。6)單調(diào)區(qū)間也可以從圖上看出.

 。ㄋ模┌鍟O(shè)計

  1.定義域

  2.值域

  3.最值

  4.正負區(qū)間

  5.零點

  例1

  例2

  例3

  課堂練習

  課后思考題:求函數(shù)的最大值和最小值及取最值時的集合

  提示:

高中數(shù)學教案10

  教學目標:

  1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;

  2.學會用分層抽樣的方法從總體中抽取樣本;

  3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.

  教學重點:

  通過實例理解分層抽樣的方法.

  教學難點:

  分層抽樣的步驟.

  教學過程:

  一、問題情境

  1.復習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學生活動

  能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

  指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

  由于樣本的.容量與總體的個體數(shù)的比為100∶2500=1∶25,

  所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.

  三、建構(gòu)數(shù)學

  1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔ⅲ箻颖揪哂休^好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

  2.三種抽樣方法對照表:

  類別

  共同點

  各自特點

  相互聯(lián)系

  適用范圍

  簡單隨機抽樣

  抽樣過程中每個個體被抽取的概率是相同的

  從總體中逐個抽取

  總體中的個體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時采用簡單隨機抽樣

  總體中的個體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進行抽取

  各層抽樣時采用簡單隨機抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

 。2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

 。3)確定各層應抽取的樣本容量.

  (4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽。,綜合每層抽樣,組成樣本.

  四、數(shù)學運用

  1.例題.

  例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

  (2)①教育局督學組到學校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

 、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;

  ③某班元旦聚會,要產(chǎn)生兩名“幸運者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡單隨機抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

  C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

  例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應怎樣進行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡單隨機抽樣方法抽。

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

  (3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

  (2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

 。3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

  五、要點歸納與方法小結(jié)

  本節(jié)課學習了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學教案11

  一、預習目標

  預習《平面向量應用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。

  二、預習內(nèi)容

  閱讀課本內(nèi)容,整理例題,結(jié)合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:

  1、例1如果不用向量的方法,還有其他證明方法嗎?

  2、利用向量方法解決平面幾何問題的“三步曲”是什么?

  3、例3中,

  ⑴為何值時,|F1|最小,最小值是多少?

 、苵F1|能等于|G|嗎?為什么?

  三、提出疑惑

  同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。

  課內(nèi)探究學案

  一、學習內(nèi)容

  1、運用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。

  2、運用向量的有關(guān)知識解決簡單的物理問題。

  二、學習過程

  探究一:

  (1)向量運算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?

 。2)舉出幾個具有線性運算的幾何實例。

  例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。

  已知:平行四邊形ABCD。

  求證:

  試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?

  (1)建立平面幾何與向量的'聯(lián)系,

 。2)通過向量運算,研究幾何元素之間的關(guān)系,

  (3)把運算結(jié)果“翻譯”成幾何關(guān)系。

  例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

  探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?

  例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學的角度解釋這種現(xiàn)象嗎?

  請同學們結(jié)合剛才這個問題,思考下面的問題:

 、艦楹沃禃r,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|嗎?為什么?

  例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?

  變式訓練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。

  三、反思總結(jié)

  結(jié)合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。

  代數(shù)化的特點,數(shù)形結(jié)合的數(shù)學思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現(xiàn)了數(shù)學的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。

  本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。

高中數(shù)學教案12

  =

  =425a0b0=425.

  點評:化簡這類式子一般有兩種辦法,一是首先用負指數(shù)冪的定義把負指數(shù)化成正指數(shù),另一個方法是采用分式的基本性質(zhì)把負指數(shù)化成正指數(shù)。

  (3)5-26+7-43-6-42

  =(3-2)2+(2-3)2-(2-2)2

  =3-2+2-3-2+2=0.

  點評:考慮根號里面的數(shù)是一個完全平方數(shù),千萬注意方根的性質(zhì)的運用。

  例3已知,n∈正整數(shù)集,求(x+1+x2)n的值。

  活動:學生思考,觀察題目的特點,從整體上看,應先化簡,然后再求值,要有預見性,與具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導學生考慮問題的思路,必要時給予提示。

  = 。

  這時應看到1+x2=,

  這樣先算出1+x2,再算出1+x2,代入即可。

  解:將代入1+x2,得1+x2=,

  所以(x+1+x2)n=

  =

  = =5.

  點評:運用整體思想和完全平方公式是解決本題的關(guān)鍵,要深刻理解這種做法。

  知能訓練

  課本習題2.1A組3.

  利用投影儀投射下列補充練習:

  1、化簡:的結(jié)果是()

  A. B.

  C. D.

  解析:根據(jù)本題的特點,注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進行適當?shù)淖冃巍?/p>

  因為,所以原式的分子分母同乘以。

  依次類推,所以。

  答案:A

  2、計算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.

  解:原式=

  =53+100+916-3+13+716=100.

  3、計算a+2a-1+a-2a-1(a≥1)。

  解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。

  本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習。

  4、設(shè)a>0,,則(x+1+x2)n的值為__________.

  解析:1+x2= 。

  這樣先算出1+x2,再算出1+x2,

  將代入1+x2,得1+x2= 。

  所以(x+1+x2)n=

  = =a.

  答案:a

  拓展提升

  參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪的意義。

  活動:教師引導學生回顧無理數(shù)指數(shù)冪的意義的過程,利用計算器計算出3的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計算的過剩近似值和不足近似值,利用逼近思想,“逼出”的意義,學生合作交流,在投影儀上展示自己的探究結(jié)果。

  解:3=1.732 050 80…,取它的過剩近似值和不足近似值如下表。

  3的過剩近似值

  的過剩近似值

  3的不足近似值

  的不足近似值

  1.8 3.482 202 253 1.7 3.249 009 585

  1.74 3.340 351 678 1.73 3.317 278 183

  1.733 3.324 183 446 1.731 3.319 578 342

  1.732 1 3.322 110 36 1.731 9 3.321 649 849

  1.732 06 3.322 018 252 1.732 04 3.321 972 2

  1.732 051 3.321 997 529 1.732 049 3.321 992 923

  1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838

  1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045

  … … … …

  我們把用2作底數(shù),3的不足近似值作指數(shù)的各個冪排成從小到大的一列數(shù)

  21.7,21.72,21.731,21.731 9,…,

  同樣把用2作底數(shù),3的過剩近似值作指數(shù)的各個冪排成從大到小的一列數(shù):

  21.8,21.74,21.733,21.732 1,…,不難看出3的過剩近似值和不足近似值相同的位數(shù)越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α會越來越趨近于同一個數(shù),我們把這個數(shù)記為,

  即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.

  也就是說是一個實數(shù),=3.321 997 …也可以這樣解釋:

  當3的過剩近似值從大于3的方向逼近3時,23的近似值從大于的方向逼近;

  當3的不足近似值從小于3的方向逼近3時,23的近似值從小于的方向逼近。

  所以就是一串有理指數(shù)冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數(shù)冪21.8,21.74,21.733,21.732 1,…,按上述規(guī)律變化的.結(jié)果,即≈3.321 997.

  課堂小結(jié)

 。1)無理指數(shù)冪的意義。

  一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù)。

 。2)實數(shù)指數(shù)冪的運算性質(zhì):

  對任意的實數(shù)r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈R)。

 、(ar)s=ars(a>0,r,s∈R)。

 、(a?b)r=arbr(a>0,b>0,r∈R)。

 。3)逼近的思想,體會無限接近的含義。

  作業(yè)

  課本習題2.1 B組2.

  設(shè)計感想

  無理數(shù)指數(shù)是指數(shù)概念的又一次擴充,教學中要讓學生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教學中也可以讓學生自己通過實際情況去探索,自己得出結(jié)論,加深對概念的理解,本堂課內(nèi)容較為抽象,又不能進行推理,只能通過多媒體的教學手段,讓學生體會,特別是逼近的思想、類比的思想,多作練習,提高學生理解問題、分析問題的能力。

  備課資料

  【備用習題】

  1、以下各式中成立且結(jié)果為最簡根式的是()

  A.a?5a3a?10a7=10a4

  B.3xy2(xy)2=y?3x2

  C.a2bb3aab3=8a7b15

  D.(35-125)3=5+125125-235?125

  答案:B

  2、對于a>0,r,s∈Q,以下運算中正確的是()

  A.ar?as=ars B.(ar)s=ars

  C.abr=ar?bs D.arbs=(ab)r+s

  答案:B

  3、式子x-2x-1=x-2x-1成立當且僅當()

  A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2

  解析:方法一:

  要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

  若x≥2,則式子x-2x-1=x-2x-1成立。

  故選D.

  方法二:

  對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時式子不成立。

  對B,x-1<0時式子不成立。

  對C,x<1時x-1無意義。

  對D正確。

  答案:D

  4、化簡b-(2b-1)(1

  解:b-(2b-1)=(b-1)2=b-1(1

  5、計算32+5+32-5.

  解:令x=32+5+32-5,

  兩邊立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

  ∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

  ∴32+5+32-5=1.

高中數(shù)學教案13

  教學目標:

  1。理解并掌握瞬時速度的定義;

  2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

  3。理解瞬時速度的實際背景,培養(yǎng)學生解決實際問題的能力。

  教學重點:

  會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

  教學難點:

  理解瞬時速度和瞬時加速度的定義。

  教學過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運動位移與所用時間的比稱為平均速度。

  問題一平均速度反映物體在某一段時間段內(nèi)運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

  問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度.

  2。探究活動:

  (1)計算運動員在2s到2.1s(t∈)內(nèi)的平均速度。

  (2)計算運動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

  (3)如何計算運動員在更短時間內(nèi)的平均速度。

  探究結(jié)論:

  時間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當?t?0時,?-13.1,

  該常數(shù)可作為運動員在2s時的瞬時速度。

  即t=2s時,高度對于時間的瞬時變化率。

  二、建構(gòu)數(shù)學

  1。平均速度。

  設(shè)物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。

  可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時,極限就是物體在時刻的瞬時速度。

  三、數(shù)學運用

  例1物體作自由落體運動,運動方程為,其中位移單位是m,時

  間單位是s,,求:

  (1)物體在時間區(qū)間s上的`平均速度;

 。2)物體在時間區(qū)間上的平均速度;

 。3)物體在t=2s時的瞬時速度。

  分析

  解

  (1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當?t?0,2+?t?2,從而平均速度的極限為:

  例2設(shè)一輛轎車在公路上作直線運動,假設(shè)時的速度為,

  求當時轎車的瞬時加速度。

  解

  ∴當?t無限趨于0時,無限趨于,即=。

  練習

  課本P12—1,2。

  四、回顧小結(jié)

  問題1本節(jié)課你學到了什么?

  1理解瞬時速度和瞬時加速度的定義;

  2實際應用問題中瞬時速度和瞬時加速度的求解;

  問題2解決瞬時速度和瞬時加速度問題需要注意什么?

  注意當?t?0時,瞬時速度和瞬時加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數(shù)學教案14

  1.教學目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標: 1.進一步培養(yǎng)學生用解析法研究幾何問題的能力;

  2.使學生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強學生用數(shù)學的意識.

  (3)情感目標:培養(yǎng)學生主動探究知識、合作交流的意識,在體驗數(shù)學美的過程中激發(fā)學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標準方程以及選擇恰

  當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.

  3.教學過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的`直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設(shè)] 方法一:坐標法

  如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點 ,圓心在點 .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

高中數(shù)學教案15

  一、單元教學內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

  二、單元教學內(nèi)容分析

  算法是數(shù)學及其應用的重要組成部分,是計算科學的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應具備的一種數(shù)學素養(yǎng)。需要特別指出的是,中國古代數(shù)學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學課時安排:

  1、算法的基本概念3課時

  2、程序框圖與算法的基本結(jié)構(gòu)5課時

  3、算法的基本語句2課時

  四、單元教學目標分析

  1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

  2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

  4、通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  五、單元教學重點與難點分析

  1、重點

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實際問題

  2、難點

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

  六、單元總體教學方法

  本章教學采用啟發(fā)式教學,輔以觀察法、發(fā)現(xiàn)法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習才能掌握本節(jié)知識。

  七、單元展開方式與特點

  1、展開方式

  自然語言→程序框圖→算法語句

  2、特點

  (1)螺旋上升分層遞進(2)整合滲透前呼后應(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學過程分析

  1.算法基本概念教學過程分析

  對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學過程分析

  對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的`解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

  3.基本算法語句教學過程分析

  經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

  4.通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  九、單元評價設(shè)想

  1.重視對學生數(shù)學學習過程的評價

  關(guān)注學生在數(shù)學語言的學習過程中,是否對用集合語言描述數(shù)學和現(xiàn)實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學語言進行交流的能力。

  2.正確評價學生的數(shù)學基礎(chǔ)知識和基本技能

  關(guān)注學生在本章(節(jié))及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學課程的相關(guān)部分,在其他相關(guān)部分還將進一步學習算法

【高中數(shù)學教案】相關(guān)文章:

高中數(shù)學教案09-28

高中數(shù)學教案09-01

高中數(shù)學教案模板02-02

高中數(shù)學教案精選15篇12-30

高中數(shù)學教案15篇01-15

高中數(shù)學教案(15篇)04-11

高中數(shù)學教案(集錦15篇)08-22

高中數(shù)學教案(集合15篇)07-20

高中數(shù)學教案合集15篇01-10