- 相關(guān)推薦
高中數(shù)學(xué)必修五教案
作為一名為他人授業(yè)解惑的教育工作者,時(shí)常要開(kāi)展教案準(zhǔn)備工作,借助教案可以更好地組織教學(xué)活動(dòng)。那么什么樣的教案才是好的呢?下面是小編為大家收集的高中數(shù)學(xué)必修五教案,歡迎閱讀與收藏。
高中數(shù)學(xué)必修五教案1
教學(xué)目標(biāo)
A、知識(shí)目標(biāo):
掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。
B、能力目標(biāo):
(1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
。3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
(2)通過(guò)公式的運(yùn)用,樹立學(xué)生"大眾教學(xué)"的思想意識(shí)。
。3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛(ài)數(shù)學(xué)的情感。
教學(xué)重點(diǎn):
等差數(shù)列前n項(xiàng)和的公式。
教學(xué)難點(diǎn):
等差數(shù)列前n項(xiàng)和的公式的`靈活運(yùn)用。
教學(xué)方法:
啟發(fā)、討論、引導(dǎo)式。
教具:
現(xiàn)代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國(guó)偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級(jí)時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計(jì)算出來(lái)的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計(jì)算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來(lái)導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請(qǐng)一位學(xué)生板演。
上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應(yīng)用。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。
高中數(shù)學(xué)必修五教案2
教材分析
本節(jié)課重在探究等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及簡(jiǎn)單的應(yīng)用。教學(xué)中注重公式的形成過(guò)程及數(shù)學(xué)思想方法的滲透,并揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系.就知識(shí)的應(yīng)用價(jià)值來(lái)看,它是從大量數(shù)學(xué)問(wèn)題和現(xiàn)實(shí)問(wèn)題中抽象出來(lái)的模型,在公式推導(dǎo)中所蘊(yùn)含的數(shù)學(xué)思想方法在各種數(shù)列求和問(wèn)題中有著廣泛的應(yīng)用.就內(nèi)容的人文價(jià)值上看,它的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)學(xué)的思考問(wèn)題的良好載體.
教學(xué)目標(biāo)
知識(shí)與技能: 掌握等比數(shù)列的前n項(xiàng)和公式以及推導(dǎo)方法;會(huì)用等比數(shù)列的前n項(xiàng)和公式解決有關(guān)等比數(shù)列的一些簡(jiǎn)單問(wèn)題.
過(guò)程與方法: 經(jīng)歷等比數(shù)列前n 項(xiàng)和的推導(dǎo)過(guò)程,總結(jié)數(shù)列求和方法,體會(huì)數(shù)學(xué)中的思想方法.
情感態(tài)度與價(jià)值觀:通過(guò)教材中的實(shí)際引例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性及學(xué)習(xí)數(shù)學(xué)的主動(dòng)性.
教學(xué)重點(diǎn)
等比數(shù)列的前n項(xiàng)和公式推導(dǎo)及公式的簡(jiǎn)單應(yīng)用
教學(xué)難點(diǎn)
等比數(shù)列的前n項(xiàng)和公式推導(dǎo)過(guò)程和思想方法
教學(xué)過(guò)程
Ⅰ、課題導(dǎo)入
[創(chuàng)設(shè)情境]
[提出問(wèn)題] “國(guó)王對(duì)國(guó)際象棋的'發(fā)明者的獎(jiǎng)勵(lì)”的故事
Ⅱ、講授新課
[分析問(wèn)題]如果把各格所放的麥粒數(shù)看成是一個(gè)數(shù)列,我們可以得到一個(gè)等比數(shù)列,它的首項(xiàng)是1,公比是2,求第一個(gè)格子到第64個(gè)格子各格所放的麥粒數(shù)總合就是求這個(gè)等比數(shù)列的前64項(xiàng)的和。下面我們先來(lái)推導(dǎo)等比數(shù)列的前n項(xiàng)和公式。
高中數(shù)學(xué)必修五教案3
教學(xué)目標(biāo)
1.數(shù)列求和的綜合應(yīng)用
教學(xué)重難點(diǎn)
2.數(shù)列求和的綜合應(yīng)用
教學(xué)過(guò)程
典例分析
3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,
(1)求{an}的通項(xiàng)公式
(2)求{|an|}的前n項(xiàng)和Tn
4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項(xiàng)公式
(2)令bn=anxn ,求數(shù)列{bn}前n項(xiàng)和公式
7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10= S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值
.已知數(shù)列{an},an∈N,Sn= (an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.
11 .購(gòu)買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買后1個(gè)月第1次付款,再過(guò)1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)
12 .某商品在最近100天內(nèi)的`價(jià)格f(t)與時(shí)間t的
函數(shù)關(guān)系式是f(t)=
銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是
g(t)= -t/3 +109/3 (0≤t≤100)
求這種商品的日銷售額的最大值
注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過(guò)比較,確定最大值。
高中數(shù)學(xué)必修五教案4
教學(xué)目標(biāo)
進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問(wèn)題,如判斷三角形的形狀,證明三角形中的三角恒等式。
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):熟練運(yùn)用定理。
教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化。
教學(xué)過(guò)程
一、復(fù)習(xí)準(zhǔn)備:
1、寫出正弦定理、余弦定理及推論等公式。
2、討論各公式所求解的.三角形類型。
二、講授新課:
1、教學(xué)三角形的解的討論:
①出示例1:在△ABC中,已知下列條件,解三角形。
分兩組練習(xí)→討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?
、谟萌缦聢D示分析解的情況。(A為銳角時(shí))
、诰毩(xí):在△ABC中,已知下列條件,判斷三角形的解的情況。
2、教學(xué)正弦定理與余弦定理的活用:
、俪鍪纠2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。
分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角。
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型。
分析:由三角形的什么知識(shí)可以判別?→求最大角余弦,由符號(hào)進(jìn)行判斷
、鄢鍪纠4:已知△ABC中,,試判斷△ABC的形狀。
分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?
3、 小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化。
三、鞏固練習(xí):
3、作業(yè):教材P11 B組1、2題。
【高中數(shù)學(xué)必修五教案】相關(guān)文章:
高中數(shù)學(xué)必修教案03-01
必修三《品質(zhì)》教案01-22
語(yǔ)文必修五教學(xué)反思02-12
高二語(yǔ)文必修五總結(jié)03-23
必修五語(yǔ)文教學(xué)反思02-12
高二化學(xué)必修二教案02-01
高中化學(xué)必修一教案02-17
高中數(shù)學(xué)教案09-01
高中數(shù)學(xué)教案09-28