亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

平行四邊形教案

時間:2023-05-19 12:15:03 教案大全 我要投稿

【精華】平行四邊形教案4篇

  作為一名優(yōu)秀的教育工作者,時常需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編為大家收集的平行四邊形教案4篇,歡迎大家分享。

【精華】平行四邊形教案4篇

平行四邊形教案 篇1

  教學目標

  1、知識目標

 。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

 。2)掌握平行四邊形的性質(zhì)定理1、2,并能運用這些知識進行有關的證明或計算.

  2、能力目標

 。1)通過啟發(fā)、引導,讓學生猜想結論,培養(yǎng)學生的觀察能力和猜想能力。

 。2)驗證猜想結論,培養(yǎng)學生的論證和邏輯思維能力。

 。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。

  3、非智力目標

  滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉化的辯證唯物主義觀點.

  教學重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運用

  教學方法:講解、分析、轉化

  教學過程設計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復習四邊形的知識.

  (1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

 。2)將四邊形的邊角按位置關系分為兩類:

  教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?

  引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.

  3.對比引出平行四邊形的概念.

 。1)引導學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

 。3)強調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

 。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

 、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

 、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數(shù)量關系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

 。3)對角線

 、輰蔷互相平分(性質(zhì)定理3)

  教師注意解釋并強調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進行證明.

  (1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.

  (2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

 。3)寫出證明過程.

  3.關于“兩條平行線間的平行線段和距離”的教學.

  (1)利用性質(zhì)定理2

  導出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關系?引導學生根據(jù)平行四邊形的定義和性質(zhì)進行證明.

 、谝龑W生用語言簡練地敘述圖4-14所反映的幾何命題,并強調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚娬{(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.

  練習2

 。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.

  練習3

  在圖4-15(d)中,

  ①點A與點C的距離是線段__的長;

  ②點A到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

  ④由推論可得:兩條平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

 。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

 。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

  (4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

 。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學生熟悉平行四邊形的性質(zhì),會用它及方程的思想進行計算,并復習平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的.定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

 。1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

 。2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.

  (3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復雜問題是很有幫助的.

  3.供選用例題.

  (1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

 。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結

  1.平行四邊形與四邊形的關系.

  2.學習了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學設計說明

  本教學設計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質(zhì)進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.

  平行四邊形及其性質(zhì)

  教學目標

  1、知識目標

 。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

 。2)掌握平行四邊形的性質(zhì)定理1、2,并能運用這些知識進行有關的證明或計算.

  2、能力目標

 。1)通過啟發(fā)、引導,讓學生猜想結論,培養(yǎng)學生的觀察能力和猜想能力。

 。2)驗證猜想結論,培養(yǎng)學生的論證和邏輯思維能力。

 。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。

  3、非智力目標

  滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉化的辯證唯物主義觀點.

  教學重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運用

  教學方法:講解、分析、轉化

  教學過程設計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復習四邊形的知識.

  (1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

 。2)將四邊形的邊角按位置關系分為兩類:

  教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?

  引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.

  3.對比引出平行四邊形的概念.

 。1)引導學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

  (3)強調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

  (4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

 、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

 、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數(shù)量關系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

  (3)對角線

 、輰蔷互相平分(性質(zhì)定理3)

  教師注意解釋并強調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進行證明.

  (1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.

 。2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

  (3)寫出證明過程.

  3.關于“兩條平行線間的平行線段和距離”的教學.

 。1)利用性質(zhì)定理2

  導出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關系?引導學生根據(jù)平行四邊形的定義和性質(zhì)進行證明.

 、谝龑W生用語言簡練地敘述圖4-14所反映的幾何命題,并強調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚娬{(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.

  練習2

 。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.

  練習3

  在圖4-15(d)中,

 、冱cA與點C的距離是線段__的長;

 、邳cA到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

  ④由推論可得:兩條平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

 。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

 。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

 。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學生熟悉平行四邊形的性質(zhì),會用它及方程的思想進行計算,并復習平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

 。1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

 。2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.

  (3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復雜問題是很有幫助的.

  3.供選用例題.

  (1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

  (2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結

  1.平行四邊形與四邊形的關系.

  2.學習了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學設計說明

  本教學設計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質(zhì)進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.

平行四邊形教案 篇2

  教學內(nèi)容:教材第16-15頁例2及“想想做做”1—5題。

  教學目標:

  1.使學生通過觀察、比較、操作等實踐活動,感知平行四邊形的特點,初步認識平行四邊形,能指出平行四邊形和圍出平行四邊形。

  2.使學生經(jīng)歷從直觀、操作中抽象出平行四邊形的過程,形成平行四邊形的直觀表象,并能操作再現(xiàn)平行四邊形的形狀,積累通過多種感官學習平面圖形的經(jīng)驗,發(fā)展初步的空間觀念。

  3.使學生逐步形成參與數(shù)學活動的意識,培養(yǎng)獨立思考、主動交流的學習習慣。

  教學重點:

  平行四邊形的直觀認識

  教學難點:

  平行四邊形的直觀表象

  教具或學具準備:

  三角尺、釘子板、小棒、長方形木框(教具)

  教學過程:

  一、直觀認識

  1.觀察圖形:三角形、四邊形、五邊形、六邊形

  你準備怎樣把這些圖形分類?

  說明:有四條邊的圖形是四邊形,四邊形有各種各樣的形狀,今天我們認識一種特殊的四邊形(出示例2)

  2.學習例2

  1.這是生活里常見的情境。你能在這些情境中找出四邊形并用手沿四條邊指一指嗎?小朋友在課本例2的圖上用筆描出這樣的四邊形。

  交流:生活里一定看到過這樣的四邊形,你還在哪里看到過?

  2.操作

  請同學們拿出兩個完全一樣的`三角尺。你能拼出這樣的四邊形嗎?

  交流:把你的拼法介紹給大家。

  說明:小朋友都拼出了生活里見到的這樣的四邊形,像這樣的四邊形是平行四邊形(板書課題)

  3.抽象出圖形

  引導:像這樣的圖形是平行四邊形,你能在釘子板上圍一個平行四邊形嗎?

  學生操作,老師引導,讓學生交流圍法,老師適當引導(對邊的方向、長短完全一樣)。

  二、練習鞏固:

  1.想想做做第1題

  學生獨立完成。交流:哪些是平行四邊形?第一個為什么不是,說說你的理由。

  2.想想做做第3題

  學生畫圖,老師巡視指導。

  交流所畫的平行四邊形,指出這些圖形雖然大小不同,位置形狀不一

  樣,但都是平行四邊形。

  3.想想做做第4題

  同桌合作,動手操作,老師指導。

  交流操作方法,想想平行四邊形對邊的要求。

  4.想想做做第5題

  演示,讓學生注意觀察,你有什么發(fā)現(xiàn)。

  說明:一個長方形,不管怎樣拉,雖然形狀、大小會發(fā)生變化,但都是平行四邊形。

  三、回顧總結:

  今天我們學習了什么?請你說說認識平行四邊形的過程。

  你有什么收獲和體會。

  四、布置作業(yè)

  《補充習題》第 頁。

平行四邊形教案 篇3

  學習目標:

  1.能運用綜合法證明正方形性質(zhì)定理。

  2.體會證明過程中所運用的歸納概括以及轉化等 數(shù)學思想方法

  課前熱身:

  矩形、菱形有哪些性質(zhì)和判別方法?

  正方形有哪些性質(zhì)?你能證明嗎?

  自主學習

  1.證明有一個角是直角的菱形是正方形

  2.證明對角線相等的菱形是正方形

  4.議一議

 、僖来芜B接菱形或矩形四邊的中點能得到一個什么圖形?先猜一猜,再證明。

 、谝来芜B接特殊平行四邊形 四邊中點呢?

  課堂小結

  1、順次連接任意四邊形各邊的中點得到的四邊形是

  2、順次連接矩形各邊的中點得到的四邊形是

  3、順次連接菱形各邊的中點得到的四邊形是

  4、順次連接正 方形各邊的中點得到的四邊形是

  反饋檢測:

  1.正方形的邊長為 ,則它的.對角線長 ,若正方形的對角線長為 ,它的邊長為 。

  2.邊長為 的正方形,在一個角 剪掉一 個邊長為的 正方形,則所剩余 圖形的周長為 。

  3.已知:如圖 Rt△ABC中,∠ACB=90°,CD為∠ACB的平分線,DE⊥BC于點E,DF⊥AC于點F。

  求證:四邊形CEDF是正方形。

  布 置作業(yè):

  A組:習題 4、2 創(chuàng)新設計 B 組 習題4.、2 C 組 背定義

平行四邊形教案 篇4

  【學習目標】

  1、平行四邊形性質(zhì)(對角線互相平分)

  2、平行線之間的距離定義及性質(zhì)

  【新課探究】

  活動一:

  如圖,□ABCD的兩條對角線AC、BD相交于點O.

  (1)圖中有哪些三角形是全等的?有哪些線段是相等的?

  (2)想辦法驗證你的猜想?

  (3)平行四邊形的性質(zhì):平行四邊形的對角線

  幾何語言:∵四邊形ABCD是平行四邊形(已知)

  ∴AO==AC,BO==BD()

  活動二:如圖,直線∥,過直線上任意兩點A,B分別向直線做垂線,交直線與點C,點D.

  (1)線段AC,BD有怎樣的位置關系?

  (2)比較線段AC,BD的長短.

  (3)若兩條直線互相平行,,則其中一條直線上任意一點到另一條直線的距離,這個距離稱為平行線之間的距離。平行線之間的垂線段處處.

  【知識應用】

  1.已知□ABCD的兩條對角線相交于點O,OA=5,OB=6,則AC=,BD=

  2.如圖,四邊形ABCD是平行四邊形,DB⊥AD,求BC,CD及OB,OA的長.

  3.已知□ABCD中,AB=12,BC=6,對邊AD和BC的距離是4,則對邊AB和CD間的距離是

  【當堂反饋(小測)】:

  1、平行四邊形ABCD的`兩條對角線相交于O,OA,OB,AB的長度分別為3cm、4cm、5cm,求其它各邊以及兩條對角線的長度。

  2、如圖,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的長

  3、如圖,在□ABCD中,已知AB、BC、CD三條邊的長度分別為(x+3)cm,(x-4)cm,16cm,這個平行四邊形的周長是多少?

  【鞏固提升】

  1.平行四邊形的兩條對角線

  2、已知□ABCD的兩條對角線相交于點O,OA=5,OB=6,則AC=,BD=

  3、已知□ABCD中,AB=8,BC=6,對邊AD和BC的距離是2,則對邊AB和CD間的距離是

  4、下列性質(zhì)中,平行四邊形不一定具備的是()

  A、對角互補B、鄰角互補C、對角相等D、內(nèi)角和是360°

  5、下列說法中,不正確的是()

  A、平行四邊形的對角線相等B、平行四邊形的對邊相等

  C、平行四邊形的對角線互相平分D、平行四邊形的對角相等

  6、如圖,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的長

  7、如圖,已知□ABCD中,對角線AC與BD相交于點O,△AOD的周長是80cm,已知AD的長是35cm,求AC+BD的長。

  8、如圖,平行四邊形ABCD中,AE⊥BD,CF⊥BD,垂足分別為E、F。

  (1)寫出圖中每一對你認為全等的三角形;

  (2)選擇(1)中的任意一對進行證明。

  9.對角線可以將平行四邊形分成全等的兩部分,這樣的直線還有很多。

  (1)多做幾條這樣的直線,看看它們有什么共同的特征

  (2)試著用旋轉的有關知識解釋你的發(fā)現(xiàn)。

【平行四邊形教案】相關文章:

平行四邊形教案04-01

《平行四邊形的判定》教案06-03

《平行四邊形的認識》教案03-15

認識平行四邊形教案03-05

平行四邊形面積教案02-09

平行四邊形的面積教案11-27

《平行四邊形的面積》教案02-17

平行四邊形教案4篇05-12

平行四邊形和梯形教案03-11

平行四邊形面積的計算教案03-03