亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

平行四邊形教案

時間:2023-05-22 12:00:18 教案大全 我要投稿

平行四邊形教案范文匯編九篇

  作為一無名無私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。寫教案需要注意哪些格式呢?下面是小編為大家整理的平行四邊形教案9篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

平行四邊形教案范文匯編九篇

平行四邊形教案 篇1

  教學(xué)目標(biāo)

  知識與技能目標(biāo)

  1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說理的.基本方法。

  過程與方法目標(biāo)

  1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。

  2.鼓勵學(xué)生用多種方法進(jìn)行說理。

  情感與態(tài)度目標(biāo)

  1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

  2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評價意識。

  教材分析

  教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

  教學(xué)重點:平行四邊形的判別方法。

  教學(xué)難點:利用平行四邊形的判別方法進(jìn)行正確的說理。

  學(xué)情分析

  初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

  教學(xué)流程

  一、創(chuàng)設(shè)情境,引入新課

  師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學(xué)生活動:學(xué)生按小組進(jìn)行探索。

平行四邊形教案 篇2

  【教學(xué)目標(biāo)】

  1、知識與技能:

  探索與應(yīng)用平行四邊形的對角線互相平分的性質(zhì),理解平行線間的距離處處相等的結(jié)論,學(xué)會簡單推理。

  2、過程與方法:

  經(jīng)歷探索平行四邊形性質(zhì)的過程,進(jìn)一步發(fā)展學(xué)生的邏輯推理能力及有條理的表達(dá)能力。

  3、情感態(tài)度與價值觀:

  在探索平行四邊形性質(zhì)的過程中,感受幾何圖形中呈現(xiàn)的數(shù)學(xué)美。讓學(xué)生學(xué)會在獨(dú)立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,享受運(yùn)用知識解決問題的成功體驗,增強(qiáng)學(xué)好數(shù)學(xué)的自信心。

  【教學(xué)重點】:

  探索并掌握平行四邊形的對角線互相平分和平行線間的距離處處相等的性質(zhì)。

  【教學(xué)難點】:

  發(fā)展合情推理及邏輯推理能力

  【教學(xué)方法】:

  啟發(fā)誘導(dǎo)法,探索分析法

  【教具準(zhǔn)備】:多媒體課件

  【教學(xué)過程設(shè)計】

  第一環(huán)節(jié)回顧思考,引入新課

  什么叫平行四邊形?

  平行四邊形都有哪些性質(zhì)?

  利用平行四邊形的性質(zhì),我們可以解決相關(guān)的計算問題。阿凡提是傳說中很聰明的人。一天,財主巴依遇到阿凡提,想考一考聰明的阿凡提,說:給你兩塊地,一塊是平行四邊形形狀的(如下圖,AB=10,OA=3,BC=8),還有一塊是邊長是7的正方形EFGH土地,讓你來選一下,哪一塊面積更大?

  [學(xué)生活動]此時,學(xué)生的積極性被調(diào)動起來,努力試圖尋找各種途徑來求平行四邊形的面積,但找不到合適的解決辦法.

  [教學(xué)內(nèi)容]教師乘機(jī)引出課題,明確學(xué)習(xí)任務(wù).

  第二環(huán)節(jié)探索發(fā)現(xiàn),應(yīng)用深化

  1、做一做:(電腦顯示P100“做一做”的內(nèi)容)

  如圖4-2,□ABCD的兩條對角線AC,BD相交于點O,

  (1)圖中有哪些三角形是全等的?有哪些線段是相等的?

  (2)能設(shè)法驗證你的猜想嗎?

  [教師活動]教師將前后四名同學(xué)分成一組,學(xué)生拿出事先準(zhǔn)備好的平行四邊形及實驗工具(刻度尺、剪刀、圖釘),嘗試在交流合作中動手探究平行四邊形的對角線有何性質(zhì).

  2、觀察、討論:(小組交流)

  通過以上活動,你能得到哪些結(jié)論?并由各小組派學(xué)生表述看法。

  [教師活動]探究結(jié)束后,分組展示結(jié)果,教師利用課件展示“旋轉(zhuǎn)法”的實驗過程,增強(qiáng)教學(xué)的直觀性.

  結(jié)論:平行四邊形的對角線互相平分。

  [教師活動]“實驗都是有誤差的,我們能否對此進(jìn)行理論證明?”

  [學(xué)生活動]此問題難度不大.

  [教師活動]教師讓學(xué)生口述證明過程.最后師生共同歸納出“平行四邊形的對角線互相平分”這條性質(zhì).

  活動二

  剛才財主巴依提出的問題你能解決嗎?

  學(xué)生口述過程,教師最后給出規(guī)范的解題過程。

  練一練:

  財主不服氣,又想考阿凡提,說過點O做一直線EF,交邊AD于點E,交BC于點F.直線EF繞點O旋轉(zhuǎn)的過程中(點E與A、D不重合),你能知道這里有多少對全等三角形嗎?

  [教師活動]此處組織學(xué)生搶答,互相補(bǔ)充完善后,學(xué)生答出了全部的全等三角形.

  活動三

  電腦顯示P101關(guān)于鐵軌的圖片

  提出問題:“想一想”

  已知,直線a//b,過直線a上任兩點A,B分別向直線b作垂線,交直線b于點C,點D,如圖,

  (1)線段AC,BD所在直線有什么樣的位置關(guān)系?

  (2)比較線段AC,BD的長。

  引出平行線間距離的概念,并引導(dǎo)學(xué)生對比點到直線的距離,兩點間距離等概念。

  (讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué))

  A.(學(xué)生思考、交流)

  B.(師生歸納)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四邊形ACDB是平行四邊形

  →AC=BD

  歸納:

  若兩條直線平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線間的`距離。

  即平行線間的距離相等。

  [議一議]:

  舉你能舉出反映“平行線之間的垂直段處處相等實例嗎”?

  活動目的:

  通過生活中的實例的應(yīng)用,深化對知識的理解。

  第三環(huán)節(jié)鞏固反饋,總結(jié)提高

  1、說一說下列說法正確嗎

 、倨叫兴倪呅问禽S對稱圖形()

 、谄叫兴倪呅蔚倪呄嗟()

 、燮叫芯間的線段相等()

 、芷叫兴倪呅蔚膶蔷互相平分()

  2、已知,平行四邊形ABCD的周長是28,對角線AC,BD相交于點O,且△OBC的周長比△OBA的周長大4,則AB=

  3、已知P為平行四邊形ABCD的邊CD上的任意點,則△APB與平行四邊形ABCD的面積比為

  4、平行四邊形ABCD中,AC,DB交于點O,AC=10。DB=12,則AB的取值范圍是什么?

  5、平行四邊形ABCD的兩條對角線相交于O,OA,OB,AB的長度分別為3cm、4cm、5cm,求其它各邊以及兩條對角線的長度。

  第四環(huán)節(jié)評價反思,目標(biāo)回顧

  活動內(nèi)容:

  本節(jié)課你有哪些收獲?你能將平行四邊形的性質(zhì)進(jìn)行歸納嗎?

  [布置作業(yè)]:

  P102習(xí)題4.21,2,3

  探究題已知如下圖,在ABCD中,AC與BD相交于點O,點E,F(xiàn)在AC上,且BE∥DF.求證:BE=DF

平行四邊形教案 篇3

  教學(xué)內(nèi)容:國標(biāo)蘇教版數(shù)學(xué)第八冊P43-45。

  教學(xué)目標(biāo):

  1、同學(xué)在聯(lián)系生活實際和動手操作的過程中認(rèn)識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認(rèn)識平行四邊形的高。

  2、同學(xué)在活動中進(jìn)一步積累認(rèn)識圖形的學(xué)習(xí)經(jīng)驗,學(xué)會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能丈量或畫出平行四邊形的高。

  3、同學(xué)感受圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價值,進(jìn)一步發(fā)展對“空間與圖形”的學(xué)習(xí)興趣。

  教學(xué)重點:進(jìn)一步認(rèn)識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。

  教學(xué)難點:引導(dǎo)同學(xué)發(fā)現(xiàn)平行四邊形的特征。

  教學(xué)準(zhǔn)備:配套多媒體課件。

  教學(xué)過程:

  一、生活導(dǎo)入。

  1、(課件出示學(xué)校大門關(guān)閉和打開的錄象,最后定格成放大的圖片)教師談話:同學(xué)們每天都要經(jīng)過校門進(jìn)入學(xué)校,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據(jù)回答,教師板書:平行四邊形。

  2、你們還能找出我們生活中見過的一些平行四邊形嗎?同學(xué)回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風(fēng)箏、樓梯欄桿等。

  3、今天這節(jié)課我們一起來進(jìn)一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認(rèn)識平行四邊形。

 。墼u:《數(shù)學(xué)課程規(guī)范》指出:“同學(xué)的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是實際的、有意義的、富有挑戰(zhàn)性的!边x擇同學(xué)熟悉和感興趣的素材,吸引同學(xué)的注意力,激發(fā)同學(xué)主動參與學(xué)習(xí)活動的熱情,讓同學(xué)初步感知平行四邊形。]

  二、探究特點。

  1、剛才同學(xué)們已經(jīng)能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自身來想方法來制作一個平行四邊形呢?你們可以先看一看資料袋中有哪些資料,再獨(dú)立考慮一下準(zhǔn)備怎么做;假如有困難的可以先看看學(xué)具袋中的平行四邊形再操作。

  2、大家已經(jīng)完成了自身的創(chuàng)作,現(xiàn)在請你們和小組的同學(xué)交流一下,說說自身的做法和為什么這樣做,然后派代表上來交流。

  同學(xué)小組交流,教師巡視,并進(jìn)行一定的輔導(dǎo)。

  3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進(jìn)行補(bǔ)充。

  (1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢?

  (2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才干做一個平行四邊形?

  (3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應(yīng)該怎樣才干得到一個平行四邊形?

  (4)用直尺畫一個平行四邊形。

  ……

  (評:這個個環(huán)節(jié)的設(shè)計,本著同學(xué)為主體的思想,敢于放手,讓同學(xué)的多種感官參與學(xué)習(xí)活動,讓同學(xué)在操作中體驗平行四邊形的一些特點;既實現(xiàn)了探究過程開放性,也突出了師生之間、同學(xué)之間的多向交流,體現(xiàn)那了同學(xué)為本的理念。)

  4、剛才我們已經(jīng)能用多種方法來制作平行四邊形,現(xiàn)在請大家在方格紙上獨(dú)立在方格紙上畫一個平行四邊形,想想應(yīng)該怎么畫?注意些什么?

  (評:本環(huán)節(jié)的設(shè)計,通過在方格紙上畫,讓同學(xué)再次感知平行四邊形的一些特點,為下面的猜測、驗證和畫高作了鋪墊。)

  5、我們已經(jīng)能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么一起特點呢?下面我們一起來研究。

  根據(jù)你們在制作平行四邊形的時候的體會,你們可以猜測一下:平行四邊形有哪些特點?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜測它的特征呢?邊?角?)

  6、同學(xué)小組討論后提問并板書猜測:

  對邊可能平行;

  對邊可能相等;

  對角相等;

  ……

  7、你們真行,有了這么多的猜測,那我們能夠自身想方法來證明這些猜測是否正確呢?請每個小組先認(rèn)領(lǐng)一條,時間有多余可以再研究其他的猜測。

  同學(xué)每小組上臺認(rèn)領(lǐng)一條猜測,同學(xué)分組驗證猜測。

  8、經(jīng)過同學(xué)們的努力,我們已經(jīng)自身驗證了其中一條猜測,現(xiàn)在我們舊來交流一下,其他小組認(rèn)真聽好,他們的'回答是否正確,你覺得怎樣?

  9、小組派代表上來交流自身小組的驗證方法,其他小組在其完成后進(jìn)行評價。

  (1) 兩組對邊分別相等:同學(xué)介紹可以用對折或用直尺量的方法來驗證對邊相等后,教師用課件直觀展示。

  (2) 兩組對邊分別平行:同學(xué)匯報的時候假如不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。

  (3) 對角相等:同學(xué)說出方法后,教師讓同學(xué)再自身量一量。

  ……

  最后,教師板書出經(jīng)過驗證特點:

  兩組對邊分別平行并且相等;

  對角相等;

  內(nèi)角和是360°

  (評:這個環(huán)節(jié)的設(shè)計蘊(yùn)涵了“猜測-驗證-結(jié)論”這樣一個科學(xué)的探究方法。給同學(xué)提供了充沛的自制探索的空間,引導(dǎo)同學(xué)先猜想特點,再放手讓同學(xué)自身去驗證和交流,使同學(xué)在碰撞和交流中最后的出結(jié)論。在這個過程中,同學(xué)充沛展示了自身的思維過程,在交流中與傾聽中把自身的方法與他人的想法進(jìn)行了比較。)

  10、完成“想想做做1”。同學(xué)獨(dú)立完成后說說理由。

  三、認(rèn)識高、底。

  1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應(yīng)該怎么量?把你量的線段畫出來。

  同學(xué)自身嘗試后交流。

  2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。)

  說明:從平行四邊形一條邊上的一點到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。

  3、你能畫出另一組對邊上的高,并量一量嗎?同學(xué)繼續(xù)嘗試。

  完成后,讓同學(xué)指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應(yīng)。

  4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。

  5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標(biāo)志。假如有錯誤,讓同學(xué)說說錯在哪里。

  (這個環(huán)節(jié)的設(shè)計,通過同學(xué)自身去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應(yīng)的時候比較巧妙,同學(xué)學(xué)得輕松、明了。設(shè)計的練習(xí)也遵循循序漸進(jìn)的原則,很好地讓同學(xué)領(lǐng)悟了高的知識。)

  四、練習(xí)提高。

  1、想想做做1,哪些圖形是平行四邊形,為什么。

  2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。

  3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。

  出示,你能移動其中的一塊將它改拼生長方形嗎?

  4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙試一試。

  5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點和不同點。

  (評:在鞏固練習(xí)中,注意通過同學(xué)動手、動腦來進(jìn)一步掌握平行四邊形的特點。來年系的層次清楚、逐步提高,同學(xué)容易接受,并且注意了引導(dǎo)同學(xué)去自主探索、合作交流。)

  五、閱讀調(diào)查

  自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。

  六、全課小結(jié)

  今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進(jìn)行研究?

平行四邊形教案 篇4

  教學(xué)目標(biāo):

  (1)通過操作演示,使學(xué)生理解平行四邊形面積計算公式的推導(dǎo)過程,掌握平行四邊形面積計算公式,能正確計算平行四邊形的面積,培養(yǎng)學(xué)生初步的邏輯思維能力和空間觀念。

  (2)能靈活運(yùn)用平行四邊形的面積計算公式,根據(jù)面積計算平行四邊形的底和高,提高分析問題和解決問題的能力。

  教學(xué)重點:通過操作演示,使學(xué)生理解平行四邊形面積計算公式的推導(dǎo)過程,掌握平行四邊形面積計算公式,能正確計算平行四邊形的面積。

  教學(xué)難點:能靈活運(yùn)用平行四邊形的面積計算公式,根據(jù)面積計算平行四邊形的底和高,提高分析問題和解決問題的能力。

  教學(xué)準(zhǔn)備:教具、投影。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  1.平行四邊形、三角形、梯形的概念。

  2.平行四邊形、三角形的性質(zhì)。

  3.各圖形的對稱情況。

  4.圖形的大小用面積來表示。 (引人新課)

  二、新授

  1.投影,并觀察,填書本P1的空格

  2.操作:用割補(bǔ)法把平行四邊形拼成長方形。

  3.量一量長方形的長和寬與平行四邊形的`底和高有怎樣的關(guān)系?

  4.得出:

  長方形的面積= 長 × 寬

  平行四邊形的面積=( )×( )

  5.怎樣計算下面圖形的面積?

平行四邊形教案 篇5

  教學(xué)目標(biāo)

  1.通過生活情景與實踐操作,直觀認(rèn)識平行四邊形。

  2.在觀察與比較中,使學(xué)生在頭腦里建成長方形與四邊形間的區(qū)別與聯(lián)系。

  3.體會平行四邊形與生活的密切聯(lián)系。

  教學(xué)重難點

  通過生活情景與實踐操作,直觀認(rèn)識平行四邊形。

  教學(xué)準(zhǔn)備

  教具:活動長方形框架點子圖。

  學(xué)具:七巧板。課時

  安排1

  教學(xué)過程

  一、利用學(xué)具逐步探究

  1.拉一拉

  發(fā)給每位學(xué)生一個長方形的學(xué)具。輕輕地動手拉一拉,看看它發(fā)生了什么變化?

  生動手操作,交流自己的發(fā)現(xiàn)。學(xué)生會發(fā)現(xiàn)長方形向一邊傾斜了,角的大小發(fā)生了變化等等。程度較好的學(xué)生會說出長方形變成了平行四邊形。

  教師將拉成的'平行四邊形貼在黑板上。引出課題并板書:平形四邊形

  長方形和平行四邊形哪些地方相同,哪些地方不同呢?利用你們的學(xué)具,在四人小組里討論。

 。1)小組觀察、討論。教師到各個小組中指導(dǎo),引導(dǎo)他們從邊和角兩個方面探究。

  (2)分組匯報,小組之間互相補(bǔ)充。得出:平行四邊形和長方形一樣,都有四條邊,四個角,對邊相等。不同的是,長方形四個角都是直角,而平行四邊形一組對角是鈍角,一組對角是銳角。

  (設(shè)計意圖:讓學(xué)生親自動手操作,經(jīng)歷將長方形拉成平行四邊形的過程。在學(xué)生初步感知平行四邊的基礎(chǔ)上,探索平行四邊形與長方形的聯(lián)系和區(qū)別,幫助學(xué)生建立平行四邊形的模型。)

  2.猜一猜:[課件出示如果這些圖形都是可活動的,估計哪些能拉成平行四邊形,哪些不能拉成平行四邊形,為什么?

  讓學(xué)生安安靜靜的思考后,交流看法。平行四邊形有四條邊,所以三角形和五邊形不能拉成。普通四邊形的對邊不相等,也不能拉成。正方形能拉成特殊的平行四邊形:菱形。長方形可以拉成平行四邊形。

  請在導(dǎo)入時得到學(xué)具獎勵的學(xué)生上臺利用學(xué)具拉一拉,驗證大家的猜測)

  3.認(rèn)一認(rèn):

  讓學(xué)生判斷大屏幕上的圖形是平形四邊形嗎?[課件出示]

  學(xué)生逐一回答。教師隨即追問為什么第三、第五個圖形不是平形四邊形?)

  4.找一找:

  給出一幅畫,讓學(xué)生從這幅畫中找到平行四邊形

  課件出示畫面:在小花園里,有菱形的瓷磚、伸縮們、回廊……圖中蘊(yùn)含著各種各樣的平行四邊形。學(xué)生匯報后,讓他們數(shù)一數(shù)中有幾個平行四邊形。

  師:除此之外,你還能從生活中找到它嗎?

  二、動手操作拓展延伸:

  1.畫一畫:

 。1)生利用尺子、鉛筆在點子圖上畫平形四邊形。畫好后,在小組里互相交流。

 。2)利用展臺展示學(xué)生作品。如果出現(xiàn)錯誤,讓學(xué)生當(dāng)“小老師”互相糾正。

  2.拼一拼:

  用七巧板拼成一個平行四邊形,同桌兩人一組,比一比,哪個組拼的方法最巧妙。

 。1)請三組同桌在黑板上拼,其余學(xué)生分組在下面拼。教師巡視,發(fā)現(xiàn)巧妙的拼法,讓其展示在黑板上。

 。2)選擇一個你最喜歡的平行四邊形,說一說它是用什么形狀的七巧板拼成的。

  三、課堂

  1.這節(jié)課你有什么收獲?

  2.師:只要注意積累,你們的知識會越來越多!

平行四邊形教案 篇6

  教學(xué)目標(biāo):

  1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計算公式,并會運(yùn)用公式正確地計算平行四邊形的面積.

  2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.

  3.對學(xué)生進(jìn)行辯詐唯物主義觀點的啟蒙教育.

  教學(xué)重點:理解公式并正確計算平行四邊形的面積.

  教學(xué)難點:理解平行四邊形面積公式的推導(dǎo)過程.

  學(xué)具準(zhǔn)備:每個學(xué)生準(zhǔn)備一個平行四邊形。

  教學(xué)過程:

  1、什么是面積?

  2、請同學(xué)翻書到80頁,請觀察這兩個花壇,哪一個大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計算它的面積呢?

  一、導(dǎo)入新課

  根據(jù)長方形的面積=長×寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計算。

  二、講授新課

 。ㄒ唬(shù)方格法

  用展示臺出示方格圖

  1、這是什么圖形?(長方形)如果每個小方格代表1平方厘米,這個長方形的面積是多少?(18平方厘米)

  2、這是什么圖形?(平行四邊形)每一個方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?

  請同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。

  2、請同學(xué)看方格圖填80頁最下方的表,填完后請學(xué)生回答發(fā)現(xiàn)了什么?

  小結(jié):如果長方形的長和寬分別等于平行四邊形的底和高,則它們的面積相等。

  (二)引入割補(bǔ)法

  以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計算平行四邊形面積的方法。

  (三)割補(bǔ)法

  1、這是一個平行四邊形,請同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?

  2、然后指名到前邊演示。

  3、教師示范平行四邊形轉(zhuǎn)化成長方形的過程。

  剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長方形時,就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長方形。在變換圖形的位置時,怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。

  ①先沿著平行四邊形的高剪下左邊的直角三角形。

 、谧笫职醋∈O碌奶菪蔚挠也,右手拿著剪下的直角三角形沿著底邊慢慢向右移動。

 、垡苿右欢魏,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動,到兩個斜邊重合為止。

  請同學(xué)們把自己剪下來的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動,直到兩個斜邊重合。(教師巡視指導(dǎo)。)

  4、觀察(黑板上在剪拼成的長方形左面放一個原來的平行四邊形,便于比較。)

  ①這個由平行四邊形轉(zhuǎn)化成的長方形的.面積與原來的平行四邊形的面積比較,有沒有變化?為什么?

 、谶@個長方形的長與平行四邊形的底有什么樣的關(guān)系?

 、圻@個長方形的寬與平行四邊形的高有什么樣的關(guān)系?

  教師歸納整理:任意一個平行四邊形都可以轉(zhuǎn)化成一個長方形,它的面積和原來的平行四邊形的面積相等,它的長、寬分別和原來的平行四邊形的底、高相等。

  5、引導(dǎo)學(xué)生總結(jié)平行四邊形面積計算公式。

  這個長方形的面積怎么求?(指名回答后,在長方形右面板書:長方形的面積=長×寬)

  那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底×高。)

  6、教學(xué)用字母表示平行四邊形的面積公式。

  板書:S=a×h,告知S和h的讀音。

  說明在含有字母的式子里,字母和字母中間的乘號可以記作“”,寫成ah,也可以省略不寫,所以平行四邊形面積的計算公式可以寫成S=ah,或者S=ah。

 。6)完成第81頁中間的“填空”。

  7、驗證公式

  學(xué)生利用所學(xué)的公式計算出“方格圖中平行四邊形的面積”和用數(shù)方格的方法求出的面積相比較“相等”,加以驗證。

  條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個條件?(底和高)

 。ㄋ模⿷(yīng)用

  1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問題講解。

  3、判斷,并說明理由。

  (1)兩個平行四邊形的高相等,它們的面積就相等()

  (2)平行四邊形底越長,它的面積就越大()

  4、做書上82頁2題。

  三、體驗

  今天,你學(xué)會了什么?怎樣求平行四邊形的面積?平行四邊形的面積計算公式是怎樣推導(dǎo)的?

  四、作業(yè)

  練習(xí)十五第1題。

  五、板書設(shè)計

  平行四邊形面積的計算

  長方形的面積=長×寬 平行四邊形的面積=底×高

  S=a×hS=ah或S=ah

平行四邊形教案 篇7

  教學(xué)目標(biāo)

  1、知識目標(biāo)

 。1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

 。2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識進(jìn)行有關(guān)的證明或計算.

  2、能力目標(biāo)

  (1)通過啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。

  (2)驗證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。

 。3)通過開放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力。

  3、非智力目標(biāo)

  滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點.

  教學(xué)重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運(yùn)用

  教學(xué)方法:講解、分析、轉(zhuǎn)化

  教學(xué)過程設(shè)計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復(fù)習(xí)四邊形的知識.

 。1)引導(dǎo)學(xué)生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強(qiáng)調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

  (2)將四邊形的邊角按位置關(guān)系分為兩類:

  教學(xué)時應(yīng)結(jié)合圖形,讓學(xué)生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關(guān)系分為幾種情況?

  引導(dǎo)學(xué)生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.

  3.對比引出平行四邊形的概念.

 。1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

 。3)強(qiáng)調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

  (4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

 、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

  ②∵AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習(xí)1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

 。3)對角線

  ⑤對角線互相平分(性質(zhì)定理3)

  教師注意解釋并強(qiáng)調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進(jìn)行證明.

 。1)由平行四邊形的定義及平行線的`性質(zhì)很快證出性質(zhì)①,④,③.

  (2)啟發(fā)學(xué)生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

  (3)寫出證明過程.

  3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).

 。1)利用性質(zhì)定理2

  導(dǎo)出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.

 、谝龑(dǎo)學(xué)生用語言簡練地敘述圖4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).

  練習(xí)2

  (投影)如圖4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習(xí)區(qū)別三個距離.

  練習(xí)3

  在圖4-15(d)中,

  ①點A與點C的距離是線段__的長;

 、邳cA到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

 、苡赏普摽傻茫簝蓷l平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應(yīng)用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

 。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

 。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

 。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

 。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學(xué)生熟悉平行四邊形的性質(zhì),會用它及方程的思想進(jìn)行計算,并復(fù)習(xí)平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

 。1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

  (2)根據(jù)學(xué)生實際,對圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對角線的交點作直線交對邊或?qū)叺难娱L線,所得對應(yīng)線段相等.

 。3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復(fù)雜問題是很有幫助的.

  3.供選用例題.

 。1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

 。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結(jié)

  1.平行四邊形與四邊形的關(guān)系.

  2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學(xué)設(shè)計說明

  本教學(xué)設(shè)計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復(fù)習(xí)四邊形的有關(guān)知識的基礎(chǔ)上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學(xué)生主動探求知識的精神和思維的條理性.第2課時重點應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識和基本技能,加強(qiáng)對解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.

  平行四邊形及其性質(zhì)

  教學(xué)目標(biāo)

  1、知識目標(biāo)

 。1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。

 。2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識進(jìn)行有關(guān)的證明或計算.

  2、能力目標(biāo)

  (1)通過啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。

 。2)驗證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。

 。3)通過開放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力。

  3、非智力目標(biāo)

  滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點.

  教學(xué)重點、難點

  重點:平行四邊形的概念及其性質(zhì).

  難點:正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。

  平行四邊形的概念及性質(zhì)的靈活運(yùn)用

  教學(xué)方法:講解、分析、轉(zhuǎn)化

  教學(xué)過程設(shè)計

  一、利用分類、特殊化的方法引出平行四邊形的概念

  1.復(fù)習(xí)四邊形的知識.

 。1)引導(dǎo)學(xué)生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質(zhì),強(qiáng)調(diào)對角線的作用:將四邊形分割化歸為三角形來研究.

 。2)將四邊形的邊角按位置關(guān)系分為兩類:

  教學(xué)時應(yīng)結(jié)合圖形,讓學(xué)生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.

  2.教師提問:四邊形中的兩組對邊按位置關(guān)系分為幾種情況?

  引導(dǎo)學(xué)生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.

  3.對比引出平行四邊形的概念.

 。1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.

 。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時它還具有一般四邊形不具備的特殊性質(zhì)(個性).

 。3)強(qiáng)調(diào)定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質(zhì).

 。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)

  ②∵AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)

  練習(xí)1(投影)

  如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.

  二、探索平行四邊形的性質(zhì)并證明

  1.探索性質(zhì).

  啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:

 。3)對角線

  ⑤對角線互相平分(性質(zhì)定理3)

  教師注意解釋并強(qiáng)調(diào)對角線互相平分的含義及表示方法.

  2.利用化歸的方法對性質(zhì)逐一進(jìn)行證明.

 。1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.

 。2)啟發(fā)學(xué)生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質(zhì)②,⑤.

  (3)寫出證明過程.

  3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).

 。1)利用性質(zhì)定理2

  導(dǎo)出推論:夾在兩條平行線間的平行線段相等.

 、偬釂枺涸趫D4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.

 、谝龑(dǎo)學(xué)生用語言簡練地敘述圖4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.

 、蹚(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).

  練習(xí)2

 。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.

 。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習(xí)區(qū)別三個距離.

  練習(xí)3

  在圖4-15(d)中,

 、冱cA與點C的距離是線段__的長;

 、邳cA到直線l2的距離是線段__的長;

 、蹆蓷l平行線l1與l2的距離是線段__或__的長;

  ④由推論可得:兩條平行線間的距離__.

  三、平行四邊形的定義及性質(zhì)的應(yīng)用

  1.計算.

  1填空.

 。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;

 。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;

  (3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;

 。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;

 。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  說明:通過此題讓學(xué)生熟悉平行四邊形的性質(zhì),會用它及方程的思想進(jìn)行計算,并復(fù)習(xí)平行四邊形的面積公式.

  2.證明.

  2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.

  分析:

 。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.

 。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來解題.

  3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.

  著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質(zhì)使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.

  4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.

  分析:

 。1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.

 。2)根據(jù)學(xué)生實際,對圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對角線的交點作直線交對邊或?qū)叺难娱L線,所得對應(yīng)線段相等.

  (3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對解答復(fù)雜問題是很有幫助的.

  3.供選用例題.

 。1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?

  (2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.

 。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.

  四、師生共同小結(jié)

  1.平行四邊形與四邊形的關(guān)系.

  2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?

  3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?

  五、作業(yè)

  課本第143頁第2,3,4,5,6題.

  課堂教學(xué)設(shè)計說明

  本教學(xué)設(shè)計需2課時完成.

  這節(jié)內(nèi)容分2課時.第1課時在復(fù)習(xí)四邊形的有關(guān)知識的基礎(chǔ)上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對角線三個方面探索平行四邊形的性質(zhì),使知識更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學(xué)生主動探求知識的精神和思維的條理性.第2課時重點應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識和基本技能,加強(qiáng)對解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.

平行四邊形教案 篇8

  教學(xué)目標(biāo)設(shè)計:

  1、激發(fā)主動探索數(shù)學(xué)問題的興趣,經(jīng)歷平行四邊形面積計算公式的推導(dǎo)過程,會運(yùn)用公式求平行四邊形的面積。

  2、體會“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。

  3、培養(yǎng)初步的推理能力和合作意識,以及解決實際問題的能力。

  教學(xué)重點:探究平行四邊形的面積公式

  教學(xué)難點:理解平行四邊形的面積計算公式的推導(dǎo)過程

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)情境,激發(fā)矛盾

  拿出一個長方形框架,提問:這個框架所圍成圖形的面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:長方形面積=長×寬

  教師捏住兩角輕微拉動長方形框架,使它稍微變形成一個平行四邊形。提問:它圍成的圖形面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:平行四邊形面積=底邊長×鄰邊長

  學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會受以前知識經(jīng)驗和教師剛才設(shè)問的影響,認(rèn)為平行四邊形的面積等于底邊長×鄰邊長。

  教師繼續(xù)拉動平行四邊形框架,使變形后的平行四邊形越來越扁,到最后拉成一個很扁的平行四邊形,提問:這些平行四邊形的面積也等于底

  邊長×鄰邊長嗎?

  今天這節(jié)課我們就來研究“平行四邊形的面積”。教師板書課題。

  學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動的平行四邊形越來越扁的變化,學(xué)生的原有知識經(jīng)驗體系開始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長乘鄰邊長不能解決平行四邊形面積是多少問題?問題出在哪里呢?

  二、另辟蹊徑,探究新知

  1、尋找根源,另辟蹊徑

  教師邊演示長方形漸變平行四邊形的過程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長方形的長與寬演變而來的底邊長與鄰邊長相乘來求面積呢?

  引導(dǎo)學(xué)生思考:原來是平行四邊形的面積變得越來越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來求平行四邊形的面積呢?

  學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過程中,底邊與鄰邊的長沒有發(fā)生變化,也就是說,底邊長與鄰邊長相乘的積應(yīng)該也是不變的,但明顯的事實是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變越小。看來此路不通,那又該在哪里找出路呢?

  2、適時引導(dǎo),自主探索

  教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會計算長方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長方形來求面積呢?

  (1)學(xué)生操作

  學(xué)生動手實踐,尋求方法。

  學(xué)情預(yù)設(shè):學(xué)生可能會有三種方法出現(xiàn)。

  第一種是沿著平行四邊形的頂點做的高剪開,通過平移,拼出長方形。 第二種是沿著平行四邊形中間任意一高剪開。

  第三種是沿平行四邊形兩端的兩個頂點做的高剪開,把剪下來的兩個小直角三角形拼成一個長方形,再和剪后得出的長方形拼成一個長方形。

  (2)觀察比較

  剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長方形,在操作時有一個共同點,是什么呢?為什么要這樣呢?

  (3)課件演示

  是不是任意一個平行四邊形都能轉(zhuǎn)化成一個長方形呢?請同學(xué)們仔細(xì)觀察大屏幕,讓我們再來體會一下。

  3、公式推導(dǎo),形成模型

  既然我們可以把一個平行四邊形轉(zhuǎn)化成一個長方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計算呢?

  先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。

  A、拼成的長方形和原來的平行四邊形比,什么變了?什么沒有改變?

  B、拼成的長方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?

  C、你能根據(jù)長方形面積計算公式推導(dǎo)出平行四邊形的.面積計算公式嗎?)

  學(xué)情預(yù)設(shè):學(xué)生通過討論很快就能得出拼成的長方形和原來的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語言表達(dá)其推導(dǎo)思路:“把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形的面積相等。這個長方形的長與平行四邊形的底相等,這個長方形的寬與平行四邊形的高相等,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高。”并將公式板書如下:

  長方形的面積 = 長 × 寬

  平行四邊形的面積 = 底 × 高

  4、變化對比,加深理解

  引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長方形變成平行四邊形與第二次的平行四邊形變成長方形,這兩種情況有什么不一樣?哪種變化能說明平行四邊形的面積計算方法的來源呢?為什么?

  5、自學(xué)字母公式,體會作用

  請同學(xué)們打開課本第81頁,告訴老師,如果用字母表示平行四邊形的

  面積計算公式,應(yīng)該怎樣表示?你覺得用字母表達(dá)式比文字表達(dá)式好在哪里?

  三、實踐應(yīng)用

  1、出示課本第82頁題目,一個平行四邊形的停車位底邊長5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說出列式的根據(jù))

  2、看圖口述平行四邊形的面積。

  3分米 2.5厘米

  3、這個平行四邊形的面積你會求嗎?你是怎樣想的?

  4、分別計算圖中每個平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個?

平行四邊形教案 篇9

  一、教學(xué)目標(biāo)

  1知識目標(biāo)

  理解平行四邊形的概念;探索并掌握平行四邊形的對邊相等,對角相等的性質(zhì)。

  2能力目標(biāo)

  在探索過程中發(fā)展學(xué)生的探究能力,提高學(xué)生運(yùn)用數(shù)學(xué)知識解決問題的能力;

  3情感目標(biāo)

  培養(yǎng)學(xué)生合作交流的習(xí)慣,提高克復(fù)困難的勇氣和信心。

  二、教學(xué)重點、難點

  教學(xué)重點:探索平行四邊形的性質(zhì)

  教學(xué)難點:通過操作、思考、歸納出結(jié)論

  三、教學(xué)方法

  探索歸納法

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境,引入新課

  1.(幻燈片展示)觀察圖片中有你熟悉的哪種圖形?(平行四邊形)請你舉出自己身邊存在的平行四邊形的例子。

  例如:汽車的防護(hù)鏈,地板磚,籬笆格子等(用幻燈打出實物的照片) 2.觀察圖形有什么特征?(有兩組對邊分別平行)

  平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形如圖:四邊形ABCD是平行四邊形記作:ABCD今天我們就來探究平形四邊形的性質(zhì)。

  (二)講授新課

  1、拼一拼(出示幻燈片)小組合作,探究新知

  用兩個全等的三角形紙片可以拼出幾種形狀不同的平行四邊形?從拼圖中你能得到哪些啟示?相對的邊、角分別有什么關(guān)系?

  (讓學(xué)生實際動手操作,可分組討論結(jié)論,用ppt課件展示)

  2、學(xué)生分析總結(jié)出:平行四邊形的對邊平行

  平行四邊形的`對邊相等

  平行四邊形的對角相等

  平行四邊形的鄰角互補(bǔ)

  用符號語言表示:如圖

  小結(jié):平行四邊形的性質(zhì)是證明線段相等、角相等的重要依據(jù)和方法。 3.用什么方法驗證平行四邊形:兩組對邊分別相等

  兩組對角分別相等

  (小組討論比一比看誰的速度最快、方法最多)

  4、例題講解

  如圖:小明用一根36m長的繩子圍成了一個平行四邊形的場地,其中一條邊AB長為8m,其他三條邊各長多少?

  解:∵四邊形ABCD是平行四邊形

  ∴AB=CD, AD=BC

  ∵AB=8m

  ∴CD=8m

  又AB+BC+CD+AD=36

  ∴ AD=BC=10m

  (三)隨堂練習(xí)(幻燈片展示)

  (四)感悟與收獲

  1.兩組對邊分別平行的四邊形叫做平行四邊形. 2.平行四邊形的性質(zhì):對邊平行

  對邊相等

  對角相等

  鄰角互補(bǔ)

  3.解決平行四邊形的有關(guān)問題經(jīng)常連結(jié)對角線轉(zhuǎn)化為三角形。

  (五)作業(yè)

  (六)板書與設(shè)計

  (見幻燈片)

【平行四邊形教案】相關(guān)文章:

平行四邊形教案04-01

平行四邊形的面積教案11-27

平行四邊形面積教案02-09

《平行四邊形的面積》教案02-17

《平行四邊形的判定》教案06-03

認(rèn)識平行四邊形教案03-05

《平行四邊形的認(rèn)識》教案03-15

數(shù)學(xué)《平行四邊形的面積》教案02-14

平行四邊形和梯形教案03-11

數(shù)學(xué)平行四邊形的面積教案02-28