- 相關(guān)推薦
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,它是增長才干的一種好辦法,不如靜下心來好好寫寫總結(jié)吧。如何把總結(jié)做到重點(diǎn)突出呢?以下是小編為大家收集的高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納,歡迎大家分享。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納1
一、排列組合篇
1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4.掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
5.了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6.了解等可能性事件的概率的意義,會用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7.了解互斥事件、相互獨(dú)立事件的意義,會用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8.會計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
二、立體幾何篇
高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識點(diǎn)在20個以內(nèi)。選擇填空題考核立幾中的計(jì)算型問題,而解答題著重考查立幾中的邏輯推理型問題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看,以簡單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”。
(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。
(3)兩個平面平行的性質(zhì)定理:”如果兩個平行平面同時和第三個平面相交,那
么它們的交線平行“。
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
(5)夾在兩個平行平面間的平行線段相等。
(6)經(jīng)過平面外一點(diǎn)只有一個平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
解答題分步驟解答可多得分
1.合理安排,保持清醒。數(shù)學(xué)考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時到考場。
2.通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
3 .解答題規(guī)范有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語言(文字語言、符號語言、圖形語言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計(jì)算過程要完整,注意算理算法,應(yīng)用題建模與還原過程要清晰,合理安排卷面結(jié)構(gòu)……對于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因?yàn)楦呖?微博)閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
三、數(shù)列問題篇
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的'考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面;(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
知識整合
1.在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問題;
2.在解決綜合題和探索性問題實(shí)踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3.培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法.
四、導(dǎo)數(shù)應(yīng)用篇專題綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);
(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應(yīng)引起注意。
知識整合
1.導(dǎo)數(shù)概念的理解。
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
3.要能正確求導(dǎo),必須做到以下兩點(diǎn):
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
五、解析幾何(圓錐曲線)高考解析幾何剖析:
1、很多高考問題都是以平面上的點(diǎn)、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問題;
2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。
有了以上兩點(diǎn)認(rèn)識,我們可以毫不猶豫地下這么一個結(jié)論,那就是解決高考解析幾何問題無外乎做兩項(xiàng)工作:
1、幾何問題代數(shù)化。
2、用代數(shù)規(guī)則對代數(shù)化后的問題進(jìn)行處理。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理5
(1)隨機(jī)抽樣
、倌軓默F(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價值的統(tǒng)計(jì)問題。
、诮Y(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性。
③在參與解決統(tǒng)計(jì)問題的過程中,學(xué)會用簡單隨機(jī)抽樣方法從總體中抽取樣本;通過對實(shí)例的分析,了解分層抽樣和系統(tǒng)抽樣方法。
、苣芡ㄟ^試驗(yàn)、查閱資料、設(shè)計(jì)調(diào)查問卷等方法收集數(shù)據(jù)。
(2)用樣本估計(jì)總體
、偻ㄟ^實(shí)例體會分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學(xué)會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點(diǎn)。
、谕ㄟ^實(shí)例理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差。
、勰芨鶕(jù)實(shí)際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋。
、茉诮鉀Q統(tǒng)計(jì)問題的過程中,進(jìn)一步體會用樣本估計(jì)總體的思想,會用樣本的頻率分布估計(jì)總體分布,會用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征;初步體會樣本頻率分布和數(shù)字特征的隨機(jī)性。
、輹秒S機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡單的實(shí)際問題;能通過對數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認(rèn)識統(tǒng)計(jì)的作用,體會統(tǒng)計(jì)思維與確定性思維的差異。
、扌纬蓪(shù)據(jù)處理過程進(jìn)行初步評價的意識。
(3)變量的相關(guān)性
、偻ㄟ^收集現(xiàn)實(shí)問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識變量間的相關(guān)關(guān)系。
②經(jīng)歷用不同估算方法描述兩個變量線性相關(guān)的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納2
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點(diǎn)還包含兩個分析。
二、平面向量和三角函數(shù)
對于這部分知識重點(diǎn)考察三個方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個板塊,重點(diǎn)考兩個方面:一個通項(xiàng);一個是求和。
四、空間向量和立體幾何
在里面重點(diǎn)考察兩個方面:一個是證明;一個是計(jì)算。
五、概率和統(tǒng)計(jì)
概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。
六、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點(diǎn)問題;第三類是弦長問題;第四類是對稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
七、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點(diǎn):什么是直線方程
從平面解析幾何的.角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納3
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個數(shù)在數(shù)列中的'位置序號,它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項(xiàng)公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項(xiàng)公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納4
兩個復(fù)數(shù)相等的定義:
如果兩個復(fù)數(shù)的.實(shí)部和虛部分別相等,那么我們就說這兩個復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時,a+bi=0
a=0,b=0.
復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。
復(fù)數(shù)相等特別提醒:
一般地,兩個復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個復(fù)數(shù)全是實(shí)數(shù)時才能比較大小。
解復(fù)數(shù)相等問題的方法步驟:
(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;
(2)根據(jù)復(fù)數(shù)相等的充要條件解之。
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納5
一次函數(shù)的定義
一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。
解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的'函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個變量之間的函數(shù)關(guān)系。
一次函數(shù)的性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)
注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
a)k不為0
b)x的指數(shù)是1
c)b取任意實(shí)數(shù)
一次函數(shù)y=kx+b的圖像是經(jīng)過(0,b)和(-b/k,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當(dāng)b>0時,向上平移;b<0時,向下平移)
【高考數(shù)學(xué)知識點(diǎn)總結(jié)整理 高考數(shù)學(xué)知識歸納】相關(guān)文章:
高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)12-13
高考總復(fù)習(xí)化學(xué)重點(diǎn)知識點(diǎn)歸納11-06
七年級數(shù)學(xué)知識點(diǎn)歸納總結(jié)12-20
初中數(shù)學(xué)知識點(diǎn)總結(jié)04-30
中考數(shù)學(xué)知識點(diǎn)總結(jié)01-02
初一的數(shù)學(xué)知識點(diǎn)總結(jié)12-04
高三數(shù)學(xué)知識點(diǎn)總結(jié)02-20