初二年級上冊數(shù)學期中知識點歸納
在學習中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是學習的重點。相信很多人都在為知識點發(fā)愁,以下是小編幫大家整理的初二年級上冊數(shù)學期中知識點歸納,供大家參考借鑒,希望可以幫助到有需要的朋友。
初二年級上冊數(shù)學期中知識點歸納
平面直角坐標系概念:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系,水平的數(shù)軸叫x軸或橫軸;鉛垂的數(shù)軸叫y軸或縱軸,兩數(shù)軸的交點O稱為原點。
點的坐標:在平面內(nèi)一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數(shù)a、b分別叫P點的橫坐標和縱坐標,則有序?qū)崝?shù)對(a、b)叫做P點的坐標。
在直角坐標系中如何根據(jù)點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。
如何根據(jù)已知條件建立適當?shù)闹苯亲鴺讼?
根據(jù)已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:
、僖阅骋阎c為原點,使它坐標為(0,0);
、谝詧D形中某線段所在直線為x軸(或y軸);
③以已知線段中點為原點;
、芤詢芍本交點為原點;
、堇脠D形的軸對稱性以對稱軸為y軸等。
圖形“縱橫向伸縮”的變化規(guī)律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:
、佼攏>1時,伸長為原來的n倍;
、诋0
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別變成原來的n倍時,所得的圖形比原來的圖形在縱向:
、佼攏>1時,伸長為原來的n倍;
②當0
圖形“縱橫向位置”的變化規(guī)律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個單位。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個單位。
圖形“倒轉(zhuǎn)與對稱”的變化規(guī)律:
A、將圖形上各個點的橫坐標不變,縱坐標分別乘以-1,所得的圖形與原來的圖形關于x軸對稱。
B、將圖形上各個點的縱坐標不變,橫坐標分別乘以-1,所得的圖形與原來的圖形關于y軸對稱。
圖形“擴大與縮小”的變化規(guī)律:
將圖形上各個點的縱、橫坐標分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;
、佼攏>1時,對應線段大小擴大到原來的n倍;
、诋0
三角形的有關概念
1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
三角形的特征:
、俨辉谕恢本上;
、谌龡l線段;
、凼孜岔槾蜗嘟;
、苋切尉哂蟹(wěn)定性。
2.三角形中的三條重要線段:角平分線、中線、高
(1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
(2)中線:在三角形中,連接一個頂點和它的對邊中點的`線段叫做三角形的中線。
(3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
說明:
①三角形的角平分線、中線、高都是線段;
、谌切蔚慕瞧椒志、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。
三角形的邊和角
三邊關系:三角形中任意兩邊之和大于第三邊。
由三邊關系可以推出:三角形任意兩邊之差小于第三邊。
三角形內(nèi)、外角的關系
1.三角形的內(nèi)角和等于180°。
2.直角三角形的兩個銳角互余。
3.三角形的一外角等于和它不相鄰的兩個內(nèi)角之和,三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
4.三角形的外角和為360°。
等腰三角形與直角三角形:
1.等腰三角形:有兩條邊相等的三角形稱為等腰三角形,相等的兩邊叫做等腰三角形的腰,三條邊都相等的三角形叫做等邊三角形(或正三角形)。
說明:等邊三角形是等腰三角形的特殊情況。
2.直角三角形:有一個角是直角的三角形是直角三角形,它的兩個銳角互余。
平方根、算數(shù)平方根和立方根
1、算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術平方根。特別地,0的算術平方根是0。
表示方法:讀作根號a。
性質(zhì):正數(shù)和零的算術平方根都只有一個,零的算術平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根,讀作“正、負根號a”。
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。
開平方:求一個數(shù)a的平方根的運算,叫做開平方。
【初二年級上冊數(shù)學期中知識點歸納】相關文章:
初二數(shù)學上冊期中復習知識點歸納01-19
初二數(shù)學上冊知識點歸納07-26
初二數(shù)學上冊的知識點歸納07-12
初二數(shù)學上冊知識點總結歸納12-14
初二上冊地理期中知識點歸納07-01
初二英語上冊知識點歸納08-04
初二語文上冊知識點歸納01-25