- 相關(guān)推薦
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此十分有必須要寫一份總結(jié)哦。我們?cè)撛趺慈懣偨Y(jié)呢?下面是小編收集整理的初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)1
、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。
、苾蓚(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
、蔷段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)2
1、一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
2、正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線。
3、正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,y隨x的增大而增大,當(dāng)k0時(shí),y隨x的增大而增大;當(dāng)k
4、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的'基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問(wèn)題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過(guò)程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問(wèn)題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂(lè)趣。
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)3
不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限:x;0,y;0
點(diǎn)P(x,y)在第二象限:x;0,y;0
點(diǎn)P(x,y)在第三象限:x;0,y;0
點(diǎn)P(x,y)在第四象限:x;0,y;0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)4
分式的加減法
1、分式與分?jǐn)?shù)類似,也可以通分。根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
2、分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減。
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號(hào)分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減;
上述法則用式子表示是:
3、概念內(nèi)涵:
通分的關(guān)鍵是確定最簡(jiǎn)分母,其方法如下:最簡(jiǎn)公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡(jiǎn)公分母的字母,取各分母所有字母的次冪的積,如果分母是多項(xiàng)式,則首先對(duì)多項(xiàng)式進(jìn)行因式分解。
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)5
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;
2、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
1、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
【初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初二上數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)07-25
初二上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-09
初二數(shù)學(xué)期末備考知識(shí)點(diǎn)總結(jié)06-22
初二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-19
初二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)07-28
初二上語(yǔ)文知識(shí)點(diǎn)總結(jié)06-19
初二數(shù)學(xué)矩形的知識(shí)點(diǎn)總結(jié)07-02