亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三

九年級(jí)數(shù)學(xué)上期末測(cè)試題

時(shí)間:2021-11-29 16:39:47 初三 我要投稿

2017九年級(jí)數(shù)學(xué)上期末測(cè)試題

  練習(xí)好2017九年級(jí)數(shù)學(xué)期末測(cè)試題,對(duì)你考試有很大的幫助,趕緊行動(dòng)起來復(fù)習(xí)數(shù)學(xué)知識(shí)吧!以下是小編為你整理的2017九年級(jí)數(shù)學(xué)上期末測(cè)試題,希望對(duì)大家有幫助!

2017九年級(jí)數(shù)學(xué)上期末測(cè)試題

  2017九年級(jí)數(shù)學(xué)上期末測(cè)試卷

  一、選擇題:本大題共16小題,共42分,1-10小題各3分,11-16小題各2分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  1.如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,3),那么cosα的值是(  )

  A. B. C. D.

  2.已知線段a、b、c,其中c是a、b的比例中項(xiàng),若a=9cm,b=4cm,則線段c長(zhǎng)(  )

  A.18cm B.5cm C.6cm D.±6cm

  3.對(duì)于二次函數(shù)y=﹣ +x﹣4,下列說法正確的是(  )

  A.當(dāng)x>0時(shí),y隨x的增大而增大 B.當(dāng)x=2時(shí),y有最大值﹣3

  C.圖象的頂點(diǎn)坐標(biāo)為(﹣2,﹣7) D.圖象與x軸有兩個(gè)交點(diǎn)

  4.發(fā)展工業(yè)是強(qiáng)國(guó)之夢(mèng)的重要舉措,如圖所示零件的左視圖是(  )

  A. B. C. D.

  5.如圖,已知AB是⊙O的直徑,∠D=40°,則∠CAB的度數(shù)為(  )

  A.20° B.40° C.50° D.70°

  6.若關(guān)于x的一元二次方程x2﹣2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是(  )

  A.k<1 B.k≤1 C.k>﹣1 D.k>1

  7.如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是(  )

  A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D. =

  8.函數(shù)y=﹣x2+1的圖象大致為(  )

  A. B.

  C. D.

  9.已知α為銳角,如果sinα= ,那么α等于(  )

  A.30° B.45° C.60° D.不確定

  10.在公園的O處附近有E、F、G、H四棵樹,位置如圖所示(圖中小正方形的邊長(zhǎng)均相等)現(xiàn)計(jì)劃修建一座以O(shè)為圓心,OA為半徑的圓形水池,要求池中不留樹木,則E、F、G、H四棵樹中需要被移除的為(  )

  A.E、F、G B.F、G、H C.G、H、E D.H、E、F

  11.小李同學(xué)擲一枚質(zhì)地均勻的骰子,點(diǎn)數(shù)為2的一面朝上的概率為(  )

  A. B. C. D.

  12.已知反比例函數(shù)y= 圖象的兩個(gè)分支分別位于第二、四象限,則k的取值范圍是(  )

  A.k>1 B.k<1 C.k>0 D.k<0

  13.餐桌桌面是長(zhǎng)為160cm,寬為100cm的長(zhǎng)方形,媽媽準(zhǔn)備設(shè)計(jì)一塊桌布,面積是桌面的2倍,且使四周垂下的邊等寬.若設(shè)垂下的桌布寬為xcm,則所列方程為(  )

  A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2

  C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×100

  14.如圖,一艘輪船以40海里/時(shí)的速度在海面上航行,當(dāng)它行駛到A處時(shí),發(fā)現(xiàn)它的北偏東30°方向有一燈塔B.輪船繼續(xù)向北航行2小時(shí)后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的北偏東60°方向.若輪船繼續(xù)向北航行,那么當(dāng)再過多長(zhǎng)時(shí)間時(shí)輪船離燈塔最近?(  )

  A.1小時(shí) B. 小時(shí) C.2小時(shí) D. 小時(shí)

  15.某旅游景點(diǎn)的收入受季節(jié)的影響較大,有時(shí)候出現(xiàn)賠本的經(jīng)營(yíng)狀況.因此,公司規(guī)定:若無利潤(rùn)時(shí),該景點(diǎn)關(guān)閉.經(jīng)跟蹤測(cè)算,該景點(diǎn)一年中的利潤(rùn)W(萬元)與月份x之間滿足二次函數(shù)W=﹣x2+16x﹣48,則該景點(diǎn)一年中處于關(guān)閉狀態(tài)有(  )月.

  A.5 B.6 C.7 D.8

  16.如圖是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形,小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫出了示意圖,如圖,A、B兩點(diǎn)的距離為18米,則這種裝置能夠噴灌的草坪面積為(  )m2.

  A.36π B.72π C.144π D.18π

  二、填空題:本大題共3小題,共10分,17-18題各3分,19小題有2個(gè)空,每空2分,把答案寫在題中橫線上.

  17.若x2﹣4x+5=(x﹣2)2+m,則m=  .

  18.某校甲乙兩個(gè)體操隊(duì)隊(duì)員的平均身高相等,甲隊(duì)隊(duì)員身高的方差是S甲2=1.9,乙隊(duì)隊(duì)員身高的方差是S乙2=1.2,那么兩隊(duì)中隊(duì)員身高更整齊的是  隊(duì).(填“甲”或“乙”)

  19.(4分)你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)是面條的粗細(xì)(橫截面積)S(mm 2)的反比例函數(shù),其圖象如圖所示.

  (1)寫出y與S的函數(shù)關(guān)系式:  .

  (2)當(dāng)面條粗 1.6mm 2時(shí),面條總長(zhǎng)度是  m.

  三、解答題:本大題共7小題,共68分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

  20.(9分)某銷售冰箱的公司有營(yíng)銷人員14人,銷售部為指定銷售人員月銷售冰箱定額(單位:臺(tái)),統(tǒng)計(jì)了這14位營(yíng)銷人員該月的具體銷售量如下表:

  每人銷售臺(tái)數(shù) 20 17 13 8 5 4

  人數(shù) 1 1 2 5 3 2

  (1)該月銷售冰箱的平均數(shù)、眾數(shù)、中位數(shù)各是多少?

  (2)銷售部選擇哪個(gè)數(shù)據(jù)作為月銷售冰箱定額更合適?請(qǐng)你結(jié)合上述數(shù)據(jù)作出合理的分析.

  21.(9分)某種電子產(chǎn)品共4件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為 .

  (1)該批產(chǎn)品有正品  件;

  (2)如果從中任意取出2件,求取出2件都是正品的概率.

  22.(9分)把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).

  (1)當(dāng)t=3時(shí),求足球距離地面的高度;

  (2)當(dāng)足球距離地面的高度為10米時(shí),求t;

  (3)若存在實(shí)數(shù)t1,t2(t1≠t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.

  23.(9分)有一位滑翔傘愛好者,正在空中勻速向下滑翔,已知水平方向上的風(fēng)速為5.8m/s,如圖,在A點(diǎn)他觀察到C處塔尖的俯角為30°,5s后在B點(diǎn)的他觀察到C處塔尖的俯角為45°,此時(shí),塔尖與他本人的距離BC是AC的 ,求此人垂直下滑的距離.(參考數(shù)據(jù), 結(jié)果精確到0.1m)

  24.(10分)已知:如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O交AC于點(diǎn)D,且AD=DC,CO的`延長(zhǎng)線交⊙O于點(diǎn)E,過點(diǎn)E作弦EF⊥AB,垂足為點(diǎn)G.

  (1)求證:BC是⊙O的切線;

  (2)若AB=2,求EF的長(zhǎng).

  25.(10分)如圖,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.

  (1)建立如圖所示的坐標(biāo)系,求拋物線的解析式;

  (2)一艘裝滿物資的小船,露出水面部分的高為0.8m、寬為4m(橫斷面如圖所示).若暴雨后,水位達(dá)到警戒線CD,此時(shí)這艘船能從這座拱橋下通過嗎?請(qǐng)說明理由.

  26.(12分)如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0

  (1)若△BPQ與△ABC相似,求t的值;

  (2)連接AQ、CP,若AQ⊥CP,求t的值.

   

  2017九年級(jí)數(shù)學(xué)上期末測(cè)試題答案與解析

  一、選擇題:本大題共16小題,共42分,1-10小題各3分,11-16小題各2分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  1.如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,3),那么cosα的值是(  )

  A. B. C. D.

  【考點(diǎn)】銳角三角函數(shù)的定義;坐標(biāo)與圖形性質(zhì).

  【分析】利用勾股定理列式求出OA,再根據(jù)銳角的余弦等于鄰邊比斜邊列式即可.

  【解答】解:由勾股定理得OA= =5,

  所以cosα= .

  故選D.

  【點(diǎn)評(píng)】本題考查了銳角三角函數(shù)的定義,坐標(biāo)與圖形性質(zhì),勾股定理,熟記概念并準(zhǔn)確識(shí)圖求出OA的長(zhǎng)度是解題的關(guān)鍵.

  2.已知線段a、b、c,其中c是a、b的比例中項(xiàng),若a=9cm,b=4cm,則線段c長(zhǎng)(  )

  A.18cm B.5cm C.6cm D.±6cm

  【考點(diǎn)】比例線段.

  【分析】由c是a、b的比例中項(xiàng),根據(jù)比例中項(xiàng)的定義,列出比例式即可得出線段c的長(zhǎng),注意線段不能為負(fù).

  【解答】解:根據(jù)比例中項(xiàng)的概念結(jié)合比例的基本性質(zhì),得:比例中項(xiàng)的平方等于兩條線段的乘積.

  所以c2=4×9,解得c=±6(線段是正數(shù),負(fù)值舍去),

  故選C.

  【點(diǎn)評(píng)】此題考查了比例線段;理解比例中項(xiàng)的概念,這里注意線段不能是負(fù)數(shù).

  3.對(duì)于二次函數(shù)y=﹣ +x﹣4,下列說法正確的是(  )

  A.當(dāng)x>0時(shí),y隨x的增大而增大 B.當(dāng)x=2時(shí),y有最大值﹣3

  C.圖象的頂點(diǎn)坐標(biāo)為(﹣2,﹣7) D.圖象與x軸有兩個(gè)交點(diǎn)

  【考點(diǎn)】二次函數(shù)的性質(zhì);二次函數(shù)的圖象.

  【分析】先用配方法把函數(shù)化為頂點(diǎn)式的形式,再根據(jù)其解析式即可求解.

  【解答】解:∵二次函數(shù)y=﹣ +x﹣4可化為y=﹣ (x﹣2)2﹣3,

  又∵a=﹣ <0

  ∴當(dāng)x=2時(shí),二次函數(shù)y=﹣ x2+x﹣4的最大值為﹣3.

  故選B.

  【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì),求二次函數(shù)的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法.

  4.發(fā)展工業(yè)是強(qiáng)國(guó)之夢(mèng)的重要舉措,如圖所示零件的左視圖是(  )

  A. B. C. D.

  【考點(diǎn)】簡(jiǎn)單組合體的三視圖.

  【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.

  【解答】解:從左邊看是一個(gè)矩形平均分成2個(gè),

  故選:C.

  【點(diǎn)評(píng)】本題考查了簡(jiǎn)單組合體的三視圖,從左邊看得到的圖形是左視圖,注意看到的線畫實(shí)線.

  5.如圖,已知AB是⊙O的直徑,∠D=40°,則∠CAB的度數(shù)為(  )

  A.20° B.40° C.50° D.70°

  【考點(diǎn)】圓周角定理.

  【分析】先根據(jù)圓周角定理求出∠B及∠ACB的度數(shù),再由直角三角形的性質(zhì)即可得出結(jié)論.

  【解答】解:∵∠D=40°,

  ∴∠B=∠D=40°.

  ∵AB是⊙O的直徑,

  ∴∠ACB=90°,

  ∴∠CAB=90°﹣40°=50°.

  故選C.

  【點(diǎn)評(píng)】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半是解答此題的關(guān)鍵.

  6.若關(guān)于x的一元二次方程x2﹣2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是(  )

  A.k<1 B.k≤1 C.k>﹣1 D.k>1

  【考點(diǎn)】根的判別式.

  【分析】當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,據(jù)此求出k的取值范圍即可.

  【解答】解:∵關(guān)于x的一元二次方程x2﹣2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,

  ∴(﹣2)2﹣4×1×k>0,

  ∴4﹣4k>0,

  解得k<1,

  ∴k的取值范圍是:k<1.

  故選:A.

  【點(diǎn)評(píng)】此題主要考查了利用一元二次方程根的判別式(△=b2﹣4ac)判斷方程的根的情況,要熟練掌握,解答此題的關(guān)鍵是要明確:當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根.

  7.如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是(  )

  A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D. =

  【考點(diǎn)】相似三角形的判定.

  【分析】根據(jù)相似三角形的判定定理(①有兩角分別相等的兩三角形相似,②有兩邊的比相等,并且它們的夾角也相等的兩三角形相似)逐個(gè)進(jìn)行判斷即可.

  【解答】解:A、∵∠A=∠A,∠ABP=∠C,

  ∴△ABP∽△ACB,故本選項(xiàng)錯(cuò)誤;

  B、∵∠A=∠A,∠APB=∠ABC,

  ∴△ABP∽△ACB,故本選項(xiàng)錯(cuò)誤;

  C、∵∠A=∠A,AB2=AP•AC,即 = ,

  ∴△ABP∽△ACB,故本選項(xiàng)錯(cuò)誤;

  D、根據(jù) = 和∠A=∠A不能判斷△ABP∽△ACB,故本選項(xiàng)正確;

  故選:D.

  【點(diǎn)評(píng)】此題考查了相似三角形的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是掌握有兩角對(duì)應(yīng)相等的三角形相似與兩邊對(duì)應(yīng)成比例且夾角相等的三角形相似定理的應(yīng)用.

  8.函數(shù)y=﹣x2+1的圖象大致為(  )

  A. B.

  C. D.

  【考點(diǎn)】二次函數(shù)的圖象.

  【分析】根據(jù)二次函數(shù)的開口方向,對(duì)稱軸,和y軸的交點(diǎn)可得相關(guān)圖象.

  【解答】解:∵二次項(xiàng)系數(shù)a<0,

  ∴開口方向向下,

  ∵一次項(xiàng)系數(shù)b=0,

  ∴對(duì)稱軸為y軸,

  ∵常數(shù)項(xiàng)c=1,

  ∴圖象與y軸交于(0,1),

  故選B.

  【點(diǎn)評(píng)】考查二次函數(shù)的圖象的性質(zhì):二次項(xiàng)系數(shù)a<0,開口方向向下;一次項(xiàng)系數(shù)b=0,對(duì)稱軸為y軸;常數(shù)項(xiàng)是拋物線與y軸的交點(diǎn)的縱坐標(biāo).

  9.已知α為銳角,如果sinα= ,那么α等于(  )

  A.30° B.45° C.60° D.不確定

  【考點(diǎn)】特殊角的三角函數(shù)值.

  【分析】根據(jù)特殊角的三角函數(shù)值求解.

  【解答】解:∵α為銳角,sinα= ,

  ∴α=45°.

  故選B.

  【點(diǎn)評(píng)】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個(gè)特殊角的三角函數(shù)值.

  10.在公園的O處附近有E、F、G、H四棵樹,位置如圖所示(圖中小正方形的邊長(zhǎng)均相等)現(xiàn)計(jì)劃修建一座以O(shè)為圓心,OA為半徑的圓形水池,要求池中不留樹木,則E、F、G、H四棵樹中需要被移除的為(  )

  A.E、F、G B.F、G、H C.G、H、E D.H、E、F

  【考點(diǎn)】點(diǎn)與圓的位置關(guān)系.

  【分析】根據(jù)網(wǎng)格中兩點(diǎn)間的距離分別求出,OE,OF,OG,OH然后和OA比較大小.最后得到哪些樹需要移除.

  【解答】解:∵OA= = ,

  ∴OE=2

  OF=2

  OG=1

  OH= =2 >OA,所以點(diǎn)H在⊙O外,

  故選A

  【點(diǎn)評(píng)】此題是點(diǎn)與圓的位置關(guān)系,主要考查了網(wǎng)格中計(jì)算兩點(diǎn)間的距離,比較線段長(zhǎng)短的方法,計(jì)算距離是解本題的關(guān)鍵.點(diǎn)到圓心的距離小于半徑,點(diǎn)在圓內(nèi),點(diǎn)到圓心的距離大于半徑,點(diǎn)在圓外,點(diǎn)到圓心的距離大于半徑,點(diǎn)在圓內(nèi).

  11.小李同學(xué)擲一枚質(zhì)地均勻的骰子,點(diǎn)數(shù)為2的一面朝上的概率為(  )

  A. B. C. D.

  【考點(diǎn)】概率公式.

  【分析】拋擲一枚質(zhì)地均勻的骰子,有6種結(jié)果,每種結(jié)果等可能出現(xiàn),點(diǎn)數(shù)為2的情況只有一種,即可求.

  【解答】解:拋擲一枚質(zhì)地均勻的骰子,有6種結(jié)果,每種結(jié)果等可能出現(xiàn),

  出現(xiàn)“點(diǎn)數(shù)為2”的情況只有一種,

  故所求概率為 .

  故選:A.

  【點(diǎn)評(píng)】本題考查的是古典型概率.如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)= .

  12.已知反比例函數(shù)y= 圖象的兩個(gè)分支分別位于第二、四象限,則k的取值范圍是(  )

  A.k>1 B.k<1 C.k>0 D.k<0

  【考點(diǎn)】反比例函數(shù)的性質(zhì).

  【分析】根據(jù)反比例函數(shù)的性質(zhì)列出關(guān)于k的不等式,求出k的取值范圍即可.

  【解答】解:∵反比例函數(shù)y= 圖象的兩個(gè)分支分別位于第二、四象限,

  ∴k﹣1<0,解得k<1.

  故選B.

  【點(diǎn)評(píng)】本題考查的是反比例函數(shù)的性質(zhì),熟知反比例函數(shù)的圖象與系數(shù)的關(guān)系是解答此題的關(guān)鍵.

  13.餐桌桌面是長(zhǎng)為160cm,寬為100cm的長(zhǎng)方形,媽媽準(zhǔn)備設(shè)計(jì)一塊桌布,面積是桌面的2倍,且使四周垂下的邊等寬.若設(shè)垂下的桌布寬為xcm,則所列方程為(  )

  A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2

  C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×100

  【考點(diǎn)】由實(shí)際問題抽象出一元二次方程.

  【分析】本題可先求出桌布的面積,再根據(jù)題意用x表示桌面的長(zhǎng)與寬,令兩者的積為桌布的面積即可.

  【解答】解:依題意得:桌布面積為:160×100×2,

  桌面的長(zhǎng)為:160+2x,寬為:100+2x,

  則面積為=(160+2x)(100+2x)=2×160×100.

  故選B.

  【點(diǎn)評(píng)】本題考查的是一元二次方程的運(yùn)用,要靈活地運(yùn)用面積公式來求解.

  14.如圖,一艘輪船以40海里/時(shí)的速度在海面上航行,當(dāng)它行駛到A處時(shí),發(fā)現(xiàn)它的北偏東30°方向有一燈塔B.輪船繼續(xù)向北航行2小時(shí)后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的北偏東60°方向.若輪船繼續(xù)向北航行,那么當(dāng)再過多長(zhǎng)時(shí)間時(shí)輪船離燈塔最近?(  )

  A.1小時(shí) B. 小時(shí) C.2小時(shí) D. 小時(shí)

  【考點(diǎn)】解直角三角形的應(yīng)用-方向角問題.

  【分析】過B作AC的垂線,設(shè)垂足為D.由題易知:∠DAB=30°,∠DCB=60°,則∠CBD=∠CBA=30°,得AC=BC.由此可在Rt△CBD中,根據(jù)BC(即AC)的長(zhǎng)求出CD的長(zhǎng),進(jìn)而可求出該船需要繼續(xù)航行的時(shí)間.

  【解答】解:作BD⊥AC于D,如下圖所示:

  易知:∠DAB=30°,∠DCB=60°,

  則∠CBD=∠CBA=30°.

  ∴AC=BC,

  ∵輪船以40海里/時(shí)的速度在海面上航行,

  ∴AC=BC=2×40=80海里,

  ∴CD= BC=40海里.

  故該船需要繼續(xù)航行的時(shí)間為40÷40=1小時(shí).

  故選A.

  【點(diǎn)評(píng)】本題考查了解直角三角形的應(yīng)用中的方向角問題,注意掌握“化斜為直”是解三角形的常規(guī)思路,需作垂線(高),原則上不破壞特殊角(30°、45°60°).

  15.某旅游景點(diǎn)的收入受季節(jié)的影響較大,有時(shí)候出現(xiàn)賠本的經(jīng)營(yíng)狀況.因此,公司規(guī)定:若無利潤(rùn)時(shí),該景點(diǎn)關(guān)閉.經(jīng)跟蹤測(cè)算,該景點(diǎn)一年中的利潤(rùn)W(萬元)與月份x之間滿足二次函數(shù)W=﹣x2+16x﹣48,則該景點(diǎn)一年中處于關(guān)閉狀態(tài)有(  )月.

  A.5 B.6 C.7 D.8

  【考點(diǎn)】二次函數(shù)的應(yīng)用.

  【分析】令W=0,解得x=4或12,求出不等式﹣x2+16x﹣48>0的解即可解決問題.

  【解答】解:由W=﹣x2+16x﹣48,令W=0,則x2﹣16x+48=0,解得x=12或4,

  ∴不等式﹣x2+16x﹣48>0的解為,4

  ∴該景點(diǎn)一年中處于關(guān)閉狀態(tài)有5個(gè)月.

  故選A.

  【點(diǎn)評(píng)】本題考查二次函數(shù)的應(yīng)用,二次不等式與二次函數(shù)的關(guān)系等知識(shí),解題的關(guān)鍵是學(xué)會(huì)解二次不等式,屬于中考常考題型.

  16.如圖是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形,小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫出了示意圖,如圖,A、B兩點(diǎn)的距離為18米,則這種裝置能夠噴灌的草坪面積為(  )m2.

  A.36π B.72π C.144π D.18π

  【考點(diǎn)】垂徑定理的應(yīng)用;扇形面積的計(jì)算.

  【分析】作OC⊥AB,根據(jù)垂徑定理得出AC=9米,繼而可得圓的半徑OA的值,再根據(jù)扇形面積公式可得答案.

  【解答】解:過點(diǎn)O作OC⊥AB于C點(diǎn).

  ∵OC⊥AB,AB=18米,

  ∴AC= AB=9米,

  ∵OA=OB,∠AOB=360°﹣240°=120°,

  ∴∠AOC= ∠AOB=60°.

  在Rt△OAC中,OA2=OC2+AC2,

  又∵OC= OA,

  ∴r=OA=6 .

  ∴S= πr2=72π(m2).

  故選:B.

  【點(diǎn)評(píng)】本題主要考查垂徑定理和扇形的面積公式,熟練掌握垂徑定理求得圓的半徑是解題的關(guān)鍵.

  二、填空題:本大題共3小題,共10分,17-18題各3分,19小題有2個(gè)空,每空2分,把答案寫在題中橫線上.

  17.若x2﹣4x+5=(x﹣2)2+m,則m= 1 .

  【考點(diǎn)】配方法的應(yīng)用.

  【分析】已知等式左邊配方得到結(jié)果,即可確定出m的值.

  【解答】解:已知等式變形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,

  則m=1,

  故答案為:1

  【點(diǎn)評(píng)】此題考查了配方法的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.

  18.某校甲乙兩個(gè)體操隊(duì)隊(duì)員的平均身高相等,甲隊(duì)隊(duì)員身高的方差是S甲2=1.9,乙隊(duì)隊(duì)員身高的方差是S乙2=1.2,那么兩隊(duì)中隊(duì)員身高更整齊的是 乙 隊(duì).(填“甲”或“乙”)

  【考點(diǎn)】方差.

  【分析】根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定.

  【解答】解:∵S甲2=1.9,S乙2=1.2,

  ∴S甲2=1.9>S乙2=1.2,

  ∴兩隊(duì)中隊(duì)員身高更整齊的是乙隊(duì);

  故答案為:乙.

  【點(diǎn)評(píng)】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.

  19.你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)是面條的粗細(xì)(橫截面積)S(mm 2)的反比例函數(shù),其圖象如圖所示.

  (1)寫出y與S的函數(shù)關(guān)系式: y=  .

  (2)當(dāng)面條粗 1.6mm 2時(shí),面條總長(zhǎng)度是 80 m.

  【考點(diǎn)】反比例函數(shù)的應(yīng)用.

  【分析】(1)首先根據(jù)題意,y與s的關(guān)系為乘積一定,為面團(tuán)的體積,即可得出y與s的反比例函數(shù)關(guān)系式;

  (2)將數(shù)據(jù)代入用待定系數(shù)法可得反比例函數(shù)的關(guān)系式;進(jìn)一步求解可得答案.

  【解答】解:(1)設(shè)y與x的函數(shù)關(guān)系式為y= ,

  將s=4,y=32代入上式,

  解得:k=4×32=128,

  ∴y= ;

  故答案為:= .

  (2)當(dāng)s=1.6時(shí),y= =80,

  當(dāng)面條粗1.6mm2時(shí),面條的總長(zhǎng)度是80m;

  故答案為:80.

  【點(diǎn)評(píng)】本題考查了反比例函數(shù)的應(yīng)用,現(xiàn)實(shí)生活中存在大量成反比例函數(shù)的兩個(gè)變量,解答該類問題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.

  三、解答題:本大題共7小題,共68分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

  20.某銷售冰箱的公司有營(yíng)銷人員14人,銷售部為指定銷售人員月銷售冰箱定額(單位:臺(tái)),統(tǒng)計(jì)了這14位營(yíng)銷人員該月的具體銷售量如下表:

  每人銷售臺(tái)數(shù) 20 17 13 8 5 4

  人數(shù) 1 1 2 5 3 2

  (1)該月銷售冰箱的平均數(shù)、眾數(shù)、中位數(shù)各是多少?

  (2)銷售部選擇哪個(gè)數(shù)據(jù)作為月銷售冰箱定額更合適?請(qǐng)你結(jié)合上述數(shù)據(jù)作出合理的分析.

  【考點(diǎn)】眾數(shù);統(tǒng)計(jì)表;加權(quán)平均數(shù);中位數(shù).

  【分析】(1)根據(jù)平均數(shù)、中位數(shù)和眾數(shù)的定義求解;

  (2)眾數(shù)和中位數(shù),是大部分人能夠完成的臺(tái)數(shù).

  【解答】解:(1)平均數(shù)是9(臺(tái)),眾數(shù)是8(臺(tái)),中位數(shù)是8(臺(tái)).

  (2)每月銷售冰箱的定額為8臺(tái)才比較合適.因?yàn)樵谶@兒8既是眾數(shù),又是中位數(shù),是大部分人能夠完成的臺(tái)數(shù).

  若用9臺(tái),則只有少量人才能完成,打擊了大部職工的積極性.

  【點(diǎn)評(píng)】此題考查了學(xué)生對(duì)中位數(shù),眾數(shù),平均數(shù)的掌握情況.它們都是反映數(shù)據(jù)集中趨勢(shì)的指標(biāo).

  21.某種電子產(chǎn)品共4件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為 .

  (1)該批產(chǎn)品有正品 3 件;

  (2)如果從中任意取出2件,求取出2件都是正品的概率.

  【考點(diǎn)】列表法與樹狀圖法;概率公式.

  【分析】(1)由某種電子產(chǎn)品共4件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為 ,直接利用概率公式求解即可求得答案;

  (2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與取出2件都是正品的情況,再利用概率公式即可求得答案.

  【解答】解:(1)∵某種電子產(chǎn)品共4件,從中任意取出一件,取得的產(chǎn)品為次品的概率為 ;

  ∴批產(chǎn)品有正品為:4﹣4× =3.

  故答案為:3;

  (2)畫樹狀圖得:

  ∵結(jié)果共有12種情況,且各種情況都是等可能的,其中兩次取出的都是正品共6種,

  ∴P(兩次取出的都是正品)= = .

  【點(diǎn)評(píng)】此題考查了列表法或樹狀圖法求概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.

  22.把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).

  (1)當(dāng)t=3時(shí),求足球距離地面的高度;

  (2)當(dāng)足球距離地面的高度為10米時(shí),求t;

  (3)若存在實(shí)數(shù)t1,t2(t1≠t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.

  【考點(diǎn)】一元二次方程的應(yīng)用;二次函數(shù)的應(yīng)用.

  【分析】(1)將t=3代入解析式可得;

  (2)根據(jù)h=10可得關(guān)于t的一元二次方程,解方程即可;

  (3)由題意可得方程20t﹣t2=m 的兩個(gè)不相等的實(shí)數(shù)根,由根的判別式即可得m的范圍.

  【解答】解:(1)當(dāng)t=3時(shí),h=20t﹣5t2=20×3﹣5×9=15(米),

  ∴當(dāng)t=3時(shí),足球距離地面的高度為15米;

  (2)∵h(yuǎn)=10,

  ∴20t﹣5t2=10,即t2﹣4t+2=0,

  解得:t=2+ 或t=2﹣ ,

  故經(jīng)過2+ 或2﹣ 時(shí),足球距離地面的高度為10米;

  (3)∵m≥0,由題意得t1,t2是方程20t﹣5t2=m 的兩個(gè)不相等的實(shí)數(shù)根,

  ∴b2﹣4ac=202﹣20m>0,

  ∴m<20,

  故m的取值范圍是0≤m<20.

  【點(diǎn)評(píng)】本題主要考查二次函數(shù)背景下的求值及一元二次方程的應(yīng)用、根的判別式,根據(jù)題意得到相應(yīng)的方程及將實(shí)際問題轉(zhuǎn)化為方程問題是解題的關(guān)鍵.

  23.有一位滑翔傘愛好者,正在空中勻速向下滑翔,已知水平方向上的風(fēng)速為5.8m/s,如圖,在A點(diǎn)他觀察到C處塔尖的俯角為30°,5s后在B點(diǎn)的他觀察到C處塔尖的俯角為45°,此時(shí),塔尖與他本人的距離BC是AC的 ,求此人垂直下滑的距離.(參考數(shù)據(jù), 結(jié)果精確到0.1m)

  【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題.

  【分析】過點(diǎn)C作點(diǎn)A所在水平線的垂線,垂足為D,交點(diǎn)B所在水平線于點(diǎn)E,則CE⊥BE,設(shè)BC=x,則AC=4x,建立關(guān)于x的方程,求出x的值,進(jìn)而可求出DE=CD﹣CE=2x﹣ x≈13.6m,即此人垂直下滑的距離.

  【解答】解:過點(diǎn)C作點(diǎn)A所在水平線的垂線,垂足為D,交點(diǎn)B所在水平線于點(diǎn)E,則CE⊥BE

  設(shè)BC=x,則AC=4x,

  在Rt△BCE中,∠B=45°,

  ∴BE=CE= ,

  在Rt△ACD中,

  ∵∠A=30°,

  ∴CD=AC•sin30°=2x,AD=AC•cos30°= •4x=2 x,

  由題意可知 ,

  解得x≈10.52,

  ∴DE=CD﹣CE=2x﹣ x≈13.6m,

  答:此人垂直下滑的距離是13.6米.

  【點(diǎn)評(píng)】本題考查俯角的定義,要求學(xué)生能借助俯角構(gòu)造直角三角形并解直角三角形.注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

  24.(10分)(2016•聊城模擬)已知:如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O交AC于點(diǎn)D,且AD=DC,CO的延長(zhǎng)線交⊙O于點(diǎn)E,過點(diǎn)E作弦EF⊥AB,垂足為點(diǎn)G.

  (1)求證:BC是⊙O的切線;

  (2)若AB=2,求EF的長(zhǎng).

  【考點(diǎn)】切線的判定;勾股定理;垂徑定理;相似三角形的判定與性質(zhì).

  【分析】(1)連接BD,有圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;

  (2)AB=2,則圓的直徑為2,所以半徑為1,即OB=OE=1,利用勾股定理求出CO的長(zhǎng),再通過證明△EGO∽△CBO得到關(guān)于EG的比例式可求出EG的長(zhǎng),進(jìn)而求出EF的長(zhǎng).

  【解答】(1)證明:連接BD,

  ∵AB為⊙O的直徑,

  ∴∠ADB=90°,

  ∴BD⊥AC,

  ∵AD=CD,

  ∴AB=BC,

  ∴∠A=∠ACB=45°,

  ∴∠ABC=90°,

  ∴BC是⊙O的切線;

  (2)解:∵AB=2,

  ∴BO=1,

  ∵AB=BC=2,

  ∴CO= = ,

  ∵EF⊥AB,BC⊥AB,

  ∴EF∥BC,

  ∴△EGO∽△CBO,

  ∴ ,

  ∴ ,

  ∴EG= ,

  ∴EF=2EG= .

  【點(diǎn)評(píng)】本題考查了切線的判定與性質(zhì)、相似三角形的判定于性質(zhì)以及勾股定理的運(yùn)用;證明某一線段是圓的切線時(shí),一般情況下是連接切點(diǎn)與圓心,通過證明該半徑垂直于這一線段來判定切線.

  25.(10分)(2016秋•安平縣期末)如圖,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.

  (1)建立如圖所示的坐標(biāo)系,求拋物線的解析式;

  (2)一艘裝滿物資的小船,露出水面部分的高為0.8m、寬為4m(橫斷面如圖所示).若暴雨后,水位達(dá)到警戒線CD,此時(shí)這艘船能從這座拱橋下通過嗎?請(qǐng)說明理由.

  【考點(diǎn)】二次函數(shù)的應(yīng)用.

  【分析】(1)先設(shè)拋物線的解析式y(tǒng)=ax2,再找出幾個(gè)點(diǎn)的坐標(biāo),代入解析式后可求解.

  (2)求出拱橋頂O到CD的距離為1m,x=2時(shí),y=﹣0.16,由此即可判定.

  【解答】解:(1)設(shè)所求拋物線的解析式為:y=ax2(a≠0),

  由CD=10m,可設(shè)D(5,b),

  由AB=20m,水位上升3m就達(dá)到警戒線CD,

  則B(10,b﹣3),

  把D、B的坐標(biāo)分別代入y=ax2得:

  ,

  解得 .

  ∴y=﹣ x2;

  (2))∵b=﹣1,

  ∴拱橋頂O到CD的距離為1m,

  ∵x=2時(shí),y=﹣ =﹣0.16,

  1﹣0.8=0.2>0.16,

  ∴水位達(dá)到警戒線CD,此時(shí)這艘船能從這座拱橋下通過.

  【點(diǎn)評(píng)】本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是把一個(gè)實(shí)際問題通過數(shù)學(xué)建模,轉(zhuǎn)化為二次函數(shù)問題,用二次函數(shù)的性質(zhì)加以解決.

  26.(12分)(2015•濰坊模擬)如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0

  (1)若△BPQ與△ABC相似,求t的值;

  (2)連接AQ、CP,若AQ⊥CP,求t的值.

  【考點(diǎn)】相似三角形的判定與性質(zhì).

  【分析】(1)分兩種情況:①當(dāng)△BPQ∽△BAC時(shí),BP:BA=BQ:BC;當(dāng)△BPQ∽△BCA時(shí),BP:BC=BQ:BA,再根據(jù)BP=5t,QC=4t,AB=10cm,BC=8cm,代入計(jì)算即可;

  (2)過P作PM⊥BC于點(diǎn)M,AQ,CP交于點(diǎn)N,則有PB=5t,PM=3t,MC=8﹣4t,根據(jù)△ACQ∽△CMP,得出AC:CM=CQ:MP,代入計(jì)算即可.

  【解答】解:根據(jù)勾股定理得:BA= ;

  (1)分兩種情況討論:

 、佼(dāng)△BPQ∽△BAC時(shí), ,

  ∵BP=5t,QC=4t,AB=10,BC=8,

  ∴ ,解得,t=1,

 、诋(dāng)△BPQ∽△BCA時(shí), ,

  ∴ ,解得,t= ;

  ∴t=1或 時(shí),△BPQ∽△BCA;

  (2)過P作PM⊥BC于點(diǎn)M,AQ,CP交于點(diǎn)N,如圖所示:

  則PB=5t,PM=3t,MC=8﹣4t,

  ∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,

  ∴∠NAC=∠PCM,

  ∵∠ACQ=∠PMC,

  ∴△ACQ∽△CMP,

  ∴ ,

  ∴ ,解得t= .

  【點(diǎn)評(píng)】本題考查了相似三角形的判定與性質(zhì);由三角形相似得出對(duì)應(yīng)邊成比例是解題的關(guān)鍵.
 

【九年級(jí)數(shù)學(xué)上期末測(cè)試題】相關(guān)文章:

小學(xué)五年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題07-25

四年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題(人教版)08-07

小學(xué)四年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題04-18

必備二年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題10-11

2017年七年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題10-11

人教版2017七年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題10-11

2017七年級(jí)數(shù)學(xué)上冊(cè)期末檢測(cè)試題10-11

五年級(jí)數(shù)學(xué)上冊(cè)期末檢測(cè)試題2015最新10-11

2016新人教版五年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題10-20