亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初一數(shù)學知識點總結(jié)

時間:2024-09-07 10:10:49 初一 我要投稿

[優(yōu)秀]初一數(shù)學知識點總結(jié)15篇

  總結(jié)是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它可以提升我們發(fā)現(xiàn)問題的能力,因此,讓我們寫一份總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編為大家整理的初一數(shù)學知識點總結(jié),僅供參考,歡迎大家閱讀。

[優(yōu)秀]初一數(shù)學知識點總結(jié)15篇

初一數(shù)學知識點總結(jié)1

  1、有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、—1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

 。4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù)2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3、相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

 。2)注意:a—b+c的相反數(shù)是—a+b—c;a—b的相反數(shù)是b—a;a+b的相反數(shù)是—a—b;

 。3)相反數(shù)的和為0a+b=0a、b互為相反數(shù)。

  4、絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

 。3)|a|是重要的非負數(shù),即|a|≥0;注意:|a||b|=|ab|。

  5、有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠比0大,負數(shù)永遠比0;

  (3)正數(shù)大于一切負數(shù);

 。4)兩個負數(shù)比大小,絕對值大的反而小;

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)>0,小數(shù)—大數(shù)<0。

  6、互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù)。

  注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=—1a、b互為負倒數(shù)。

  7、有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù)。

  8、有理數(shù)加法的運算律:

 。1)加法的交換律:a+b=b+a;

  (2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9、有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10、有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  11、有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;

 。2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac。

  12、有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。

  13、有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a—b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n=an或(a—b)n=(b—a).乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

 。3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0a=0,b=0;(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位。

  15、科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

  16、近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17、有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18、混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則。

  19、特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明。

  第二章整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式。

  2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)。

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式。

  6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“—”號,括號里的各項都要變號。

  9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并。

  10。多項式的升冪和降冪排列:把一個多項式的各項按某個字母的'指數(shù)從小到大(或從大到。┡帕衅饋,叫做按這個字母的升冪排列(或降冪排列)。注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列。

  第三章一元一次方程

  1.等式與等量:用“=”號連接而成的式子叫等式。注意:“等量就能代入”!

  2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

  等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式。

  3.方程:含未知數(shù)的等式,叫方程。

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!

  5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項。移項的依據(jù)是等式性質(zhì)1。

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解)。

  10.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。(2)畫圖分析法:…………多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  11.列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離=速度時間;

  (2)工程問題:工作量=工效工時;

  (3)比率問題:部分=全體比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

 。5)商品價格問題:售價=定價折,利潤=售價—成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

  ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  12、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。把1°的角60等分,每一份叫做1分的角,1分記作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。1°=60’,1’=60”

  13、角的性質(zhì)

  (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運算。

  14、角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  15、平行線:

  在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“‖”表示,如“AB‖CD”,讀作“AB平行于CD”。

  注意:

 。1)平行線是無限延伸的,無論怎樣延伸也不相交。

 。2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

  16、平行線公理及其推論

  平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:

 。1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。

  (3)平行線的定義。

  17、垂直:

  兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

  直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。

  18、垂線的性質(zhì):

  性質(zhì)1:平面內(nèi),過一點有且只有一條直線與已知直線垂直。

  性質(zhì)2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

  19、點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。

  20、同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。

初一數(shù)學知識點總結(jié)2

  (一)有理數(shù)及其運算

  一、有理數(shù)的基礎(chǔ)知識

  1、三個重要的定義:

  (1)正數(shù):像1、2.5、這樣大于0的數(shù)叫做正數(shù);

  (2)負數(shù):在正數(shù)前面加上“-”號,表示比0小的數(shù)叫做負數(shù);

 。3)0即不是正數(shù)也不是負數(shù).

  2、有理數(shù)的分類:

 。1)按定義分類:

  正整數(shù)整數(shù)0負整數(shù)有理數(shù)正分數(shù)分數(shù)負分數(shù)

 。2)按性質(zhì)符號分類:

  正整數(shù)正有理數(shù)正分數(shù)有理數(shù)0

  負整數(shù)負有理數(shù)負分數(shù)3、數(shù)軸

  數(shù)軸有三要素:原點、正方向、單位長度.畫一條水平直線,在直線上取一點表示0(叫做原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸.在數(shù)軸上的所表示的數(shù),右邊的數(shù)總比左邊的數(shù)大,所以正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù).

  4、相反數(shù)

  如果兩個數(shù)只有符號不同,那么其中一個數(shù)就叫另一個數(shù)的相反數(shù).0的相反數(shù)是0,互為相反的兩上數(shù),在數(shù)軸上位于原點的兩則,并且與原點的距離相等.

  5、絕對值

 。1)絕對值的幾何意義:一個數(shù)的絕對值就是數(shù)軸上表示該數(shù)的點與原點的距離

 。2)絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身;0的絕對值是0;一個負數(shù)的絕對值是它的相反數(shù),可用字母a表示如下:

  (a0)aa0(a0)

  a(a0)

 。3)兩個負數(shù)比較大小,絕對值大的反而小

  二、有理數(shù)的運算

  1、有理數(shù)的加法

 。1)有理數(shù)的加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不等的異號兩數(shù)相加,取絕對值較大數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).

  (2)有理數(shù)加法的運算律:

  加法的交換律:a+b=b+a;加法的結(jié)合律:(a+b)+c=a+(b+c)

  用加法的運算律進行簡便運算的基本思路是:先把互為相反數(shù)的數(shù)相加;把同分母的分數(shù)先相加;把符號相同的數(shù)先相加;把相加得整數(shù)的數(shù)先相加。

  2、有理數(shù)的減法

 。1)有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

 。2)有理數(shù)減法常見的錯誤:顧此失彼,沒有顧到結(jié)果的符號;仍用小學計算的習慣,不把減法變加法;只改變運算符號,不改變減數(shù)的'符號,沒有把減數(shù)變成相反數(shù).

  (3)有理數(shù)加減混合運算步驟:先把減法變成加法,再按有理數(shù)加法法則進行運算;

  3、有理數(shù)的乘法

 。1)有理數(shù)乘法的法則:兩個有理數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)與0相乘都得0

 。2)有理數(shù)乘法的運算律:交換律:ab=ba;結(jié)合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac

 。3)倒數(shù)的定義:乘積是1的兩個有理數(shù)互為倒數(shù),即ab=1,那么a和b互為倒數(shù);倒數(shù)也可以看成是把分子分母的位置顛倒過來.

  4、有理數(shù)的除法

  有理數(shù)的除法法則:除以一個數(shù),等于乘上這個數(shù)的倒數(shù),0不能做除數(shù).這個法則可以把除法轉(zhuǎn)化為乘法;除法法則也可以看成是:兩個數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù)都等于0.

  5、有理數(shù)的乘法

 。1)有理數(shù)的乘法的定義:求幾個相同因數(shù)a的運算叫做乘方,乘方是一種運算,是幾個相同的因數(shù)的特殊乘法運算,記做“a”其中a叫做底數(shù),表示相同的因數(shù),n叫做指數(shù),表示相同因數(shù)的個數(shù),它所表示的意義是n個a相乘,不是n乘以a,乘方的結(jié)果叫做冪.

 。2)正數(shù)的任何次方都是正數(shù),負數(shù)的偶數(shù)次方是正數(shù),負數(shù)的奇數(shù)次方是負數(shù)6、有理數(shù)的混合運算

 。1)進行有理數(shù)混合運算的關(guān)建是熟練掌握加、減、乘、除、乘方的運算法則、運算律及運算順序.比較復(fù)雜的混合運算,一般可先根據(jù)題中的加減運算,把算式分成幾段,計算時,先從每段的乘方開始,按順序運算,有括號先算括號里的,同時要注意靈活運用運算律簡化運算.

 。2)進行有理數(shù)的混合運算時,應(yīng)注意:一是要注意運算順序,先算高一級的運算,再算低一級的運算;二是要注意觀察,靈活運用運算律進行簡便運算,以提高運算速度及運算能力.(2)整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.

  2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.

  n4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:.

  6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項

  7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“”號,括號里的各項都要變號.

  9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到。┡帕衅饋,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列(3)一元一次方程

  一、方程的有關(guān)概念

  1、方程的概念:

  (1)含有未知數(shù)的等式叫方程.

 。2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程.

  2、等式的基本性質(zhì):

  (1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式.若a=b,則a+c=b+c或ac=bc

 。2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式.若a=b,則ac=bc或

  abcc

 。3)對稱性:等式的左右兩邊交換位置,結(jié)果仍是等式.若a=b,則b=a

 。4)傳遞性:如果a=b,且b=c,那么a=c,這一性質(zhì)叫等量代換

  二、解方程

  1、移項的有關(guān)概念:

  把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項.這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù).要明白移項就是根據(jù)解方程變形的需要,把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號.

  2、解一元一次方程的步驟:(1)去分母等式的性質(zhì)2

  注意拿這個最小公倍數(shù)乘遍方程的每一項,切記不可漏乘某一項,分母是小數(shù)的,要先利用分數(shù)的性質(zhì),把分母化為整數(shù),若分子是代數(shù)式,則必加括號.

  (2)去括號去括號法則、乘法分配律

  嚴格執(zhí)行去括號的法則,若是數(shù)乘括號,切記不漏乘括號內(nèi)的項,減號后去括號,括號內(nèi)各項的符號一定要變號.

  (3)移項等式的性質(zhì)1

  越過“=”的叫移項,屬移項者必變號;未移項的項不變號,注意不遺漏,移項時把含未知數(shù)的項移在左邊,已知數(shù)移在右邊,書寫時,先寫不移動的項,把移動過來的項改變符號寫在后面

  (4)合并同類項合并同類項法則注意在合并時,僅將系數(shù)加到了一起,而字母及其指數(shù)均不改變

  (5)系數(shù)化為1等式的性質(zhì)2

  兩邊同除以未知數(shù)的系數(shù),記住未知數(shù)的系數(shù)永遠是分母(除數(shù)),切不可分子、分母顛倒

  (6)檢驗

  二、列方程解應(yīng)用題

  1、列方程解應(yīng)用題的一般步驟:

 。1)將實際問題抽象成數(shù)學問題;

 。2)分析問題中的已知量和未知量,找出等量關(guān)系;

 。3)設(shè)未知數(shù),列出方程;

  (4)解方程;

  (5)檢驗并作答.

  2、一些實際問題中的規(guī)律和等量關(guān)系:

  (1)日歷上數(shù)字排列的規(guī)律是:橫行每整行排列7個連續(xù)的數(shù),豎列中,下面的數(shù)比上面的數(shù)大7.日歷上的數(shù)字范圍是在1到31之間,不能超出這個范圍

 。2)幾種常用的面積公式:

  長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;

  梯形面積公式:S=1(ab)h,a,b為上下底邊長,h為梯形的高,S為梯形面積;22圓形的面積公式:Sr,r為圓的半徑,S為圓的面積;三角形面積公式:S1ah,a為三角形的一邊長,h為這一邊上的高,S為三角形的2面積.

 。3)幾種常用的周長公式:長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長.正方形的周長:L=4a,a為正方形的邊長,L為周長.圓:L=2πr,r為半徑,L為周長

 。4)柱體的體積等于底面積乘以高,當體積不變時,底面越大,高度就越低.所以等積變化的相等關(guān)系一般為:變形前的體積=變形后的體積.

 。5)打折銷售這類題型的等量關(guān)系是:利潤=售價成本.

 。6)行程問題中關(guān)建的等量關(guān)系:路程=速度×時間,以及由此導(dǎo)出的其化關(guān)系.

 。7)在一些復(fù)雜問題中,可以借助表格分析復(fù)雜問題中的數(shù)量關(guān)系,找出若干個較直接的等量關(guān)系,借此列出方程,列表可幫助我們分析各量之間的相互關(guān)系.

  (8)在行程問題中,可將題目中的數(shù)字語言用“線段圖”表達出來,分析問題中的數(shù)量關(guān)系,從而找出等量關(guān)系,列出方程

 。9)關(guān)于儲蓄中的一些概念:

  本金:顧客存入銀行的錢;利息:銀行給顧客的酬金;本息:本金與利息的和;期數(shù):存入的時間;利率:每個期數(shù)內(nèi)利息與本金的比;利息=本金×利率×期數(shù);本息=本金+利息.

 。4)圖形初步認識

 。ㄒ唬┒嘧硕嗖实膱D形

  立體圖形:棱柱、棱錐、圓柱、圓錐、球等.

  1、幾何圖形

  平面圖形:三角形、四邊形、圓等.主(正)視圖從正面看

  2、幾何體的三視圖側(cè)(左、右)視圖從左(右)邊看

  俯視圖從上面看

  (1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖

 。2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?/p>

  3、立體圖形的平面展開圖

 。1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的

 。2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型

  4、點、線、面、體(1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.

 。2)點動成線,線動成面,面動成體.(二)直線、射線、線段1、基本概念

  圖形直線射線線段端點個數(shù)表示法作法敘述無直線a直線AB(BA)作直線AB;作直線a一個射線AB作射線AB反向延長射線AB兩個線段a線段AB(BA)作線段a;作線段AB;連接AB延長線段AB;反向延長線段BA延長敘述不能延長2、直線的性質(zhì)

  經(jīng)過兩點有一條直線,并且只有一條直線.簡單地:兩點確定一條直線.3、畫一條線段等于已知線段(1)度量法

 。2)用尺規(guī)作圖法

  4、線段的大小比較方法(1)度量法(2)疊合法

  5、線段的中點(二等分點)、三等分點、四等分點等定義:把一條線段平均分成兩條相等線段的點.圖形:

  AMB

  符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.6、線段的性質(zhì)

  兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.7、兩點的距離連接兩點的線段長度叫做兩點的距離.8、點與直線的位置關(guān)系

 。1)點在直線上(2)點在直線外.(三)角

  1、角:由公共端點的兩條射線所組成的圖形叫做角

  2、角的表示法(四種):

  3、角的度量單位及換算

  4、角的分類∠β范圍銳角0<∠β<90°直角∠β=90°鈍角90°

初一數(shù)學知識點總結(jié)3

  角的種類

  角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  周角:等于360°的角叫做周角。

  負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。

  正角:逆時針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。

  一元一次方程組的解法

  一般步驟:

  第一步:去分母,在方程兩邊同乘以所有分母的最小公倍數(shù).注意:分子要加括號,不要漏乘不含有分母的項;

  第二步:去括號,先去小括號,再去中括號,最后去大括號.注意:不要漏乘括號內(nèi)各項,若括號前面是“ - ”,去括號后括號內(nèi)各項都要變號;

  第三步:移項,把含有未知數(shù)的項移到方程的一邊,其他項移到另一邊.注意:移項要變號,不移的項不變號,移項時不要漏項;

  第四步:合并同類項,把方程化為 ax=b(a≠0)的形式.注意:系數(shù)相加,字母部分不變;

  第五步:系數(shù)化為 1,把方程兩邊同除以未知數(shù)的系數(shù) a,得到方程的解 x={frac{a}}(a≠0).注意:不要把分子、分母位置顛倒.

  整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。

  2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

  5.常數(shù)項:不含字母的項叫做常數(shù)項。

  6.多項式的排列

  (1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  (2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  7.多項式的排列時注意:

  (1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項式,排列時,要注意:

  a.先確認按照哪個字母的指數(shù)來排列。

  b.確定按這個字母向里排列,還是向外排列。

  (3)整式:

  單項式和多項式統(tǒng)稱為整式。

  8. 多項式的加法:

  多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。

  9.同類項:所含字母相同,并且相同字母的'次數(shù)也分別相同的項叫做同類項。

  10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

  第一章 有理數(shù)

  1.1 正數(shù)與負數(shù)

  在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。

  與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。

  1.2 有理數(shù)

  正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。

  整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。

  通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。

  數(shù)軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。

  只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)

  數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。

  1.3 有理數(shù)的加減法

  有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3.一個數(shù)同0相加,仍得這個數(shù)。

  有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  1.4 有理數(shù)的乘除法

  有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。

  乘積是1的兩個數(shù)互為倒數(shù)。

  有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì

  求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。

  負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

  把一個大于10的數(shù)表示成a×10的n次方的形式,用的就是科學計數(shù)法。

  從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。

  第二章 一元一次方程

  2.1 從算式到方程

  方程是含有未知數(shù)的等式。

  方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。

  等式的性質(zhì):

  1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

  2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

  2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)

  把等式一邊的某項變號后移到另一邊,叫做移項。

  第三章 圖形認識初步

  3.1 多姿多彩的圖形

  幾何體也簡稱體(solid)。包圍著體的是面(surface)。

  3.2 直線、射線、線段

  線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

  連接兩點間的線段的長度,叫做這兩點的距離。

  3.3 角的度量

  1度=60分 1分=60秒 1周角=360度 1平角=180度

  3.4 角的比較與運算

  如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。

  如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。

  等角(同角)的補角相等。

  等角(同角)的余角相等。

  第四章 數(shù)據(jù)的收集與整理

  收集、整理、描述和分析數(shù)據(jù)是數(shù)據(jù)處理的基本過程。

  第五章 相交線與平行線

  5.1 相交線

  對頂角(vertical angles)相等。

  過一點有且只有一條直線與已知直線垂直(perpendicular)。

  連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

  5.2 平行線

  經(jīng)過直線外一點,有且只有一條直線與這條直線平行(parallel)。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  直線平行的條件:

  兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。

  5.3 平行線的性質(zhì)

  兩條平行線被第三條直線所截,同位角相等。

  兩條平行線被第三條直線所截,內(nèi)錯角相等。

  兩條平行線被第三條直線所截,同旁內(nèi)角互補。

  判斷一件事情的語句,叫做命題(proposition)。

  第六章 平面直角坐標系

  6.1 平面直角坐標系

  含有兩個數(shù)的詞來表示一個確定的位置,其中兩個數(shù)各自表示不同的含義,我們把這種有順序的兩個數(shù)a和b組成的數(shù)對,叫做有序數(shù)對(ordered pair)。

  初一數(shù)學知識點整理7-10章

  第七章 三角形

  7.1 與三角形有關(guān)的線段

  三角形(triangle)具有穩(wěn)定性。

  7.2 與三角形有關(guān)的角

  三角形的內(nèi)角和等于180度。

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。

  三角形的一個外角大于與它不相鄰的任何一個內(nèi)角

  7.3 多邊形及其內(nèi)角和

  n邊形內(nèi)角和等于:(n-2)?180度

  多邊形(polygon)的外角和等于360度。

  第八章 二元一次方程組

  8.1 二元一次方程組

  方程中含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。

  把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。

  使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。

  二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

  8.2 消元

  將未知數(shù)的個數(shù)由多化少、逐一解決的想法,叫做消元思想。

  第九章 不等式與不等式組

  9.1 不等式

  用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。

  使不等式成立的未知數(shù)的值叫做不等式的解。

  能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。

  含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

  不等式的性質(zhì):

  不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。

  不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。

  不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。

  三角形中任意兩邊之差小于第三邊。

  三角形中任意兩邊之和大于第三邊。

  9.3 一元一次不等式組

  把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。

  第十章 實數(shù)

  10.1 平方根

  如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫做a的算術(shù)平方根(arithmetic square root),2是根指數(shù)。

  a的算術(shù)平方根讀作“根號a”,a叫做被開方數(shù)(radicand)。

  0的算術(shù)平方根是0。

  如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根(square root) 。

  求一個數(shù)a的平方根的運算,叫做開平方(extraction of square root)。

  10.2 立方根

  如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根(cube root)。

  求一個數(shù)的立方根的運算,叫做開立方(extraction of cube root)。

  10.3 實數(shù)

  無限不循環(huán)小數(shù)又叫做無理數(shù)(irrational number)。

  有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)(real number)。

初一數(shù)學知識點總結(jié)4

  一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程。

  2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。

  注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。

  二、等式的性質(zhì)

 。1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc

 。2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

  三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。

  四、去括號法則

  1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

  2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

  五、解方程的一般步驟

  1.去分母(方程兩邊同乘各分母的最小公倍數(shù))

  2.去括號(按去括號法則和分配律)

  3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

  4.合并(把方程化成ax=b(a0)形式)

  5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。

  六、用方程思想解決實際問題的一般步驟

  1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。

  2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。

  3.列:根據(jù)題意列方程。

  4.解:解出所列方程。

  5.檢:檢驗所求的解是否符合題意。

  6.答:寫出答案(有單位要注明答案)。

  七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

  1、和、差、倍、分問題:

  (1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。

 。2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。

  2、等積變形問題:

  “等積變形”是以形狀改變而體積不變?yōu)榍疤。常用等量關(guān)系為:

  ①形狀面積變了,周長沒變;

 、谠象w積=成品體積。

  3、勞力調(diào)配問題:

  這類問題要搞清人數(shù)的變化,常見題型有:

  (1)既有調(diào)入又有調(diào)出。

 。2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。

 。3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。

  4、數(shù)字問題

 。1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個三位數(shù)表示為:100a+10b+c

 。2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的.關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。

  5、工程問題:

  工程問題中的三個量及其關(guān)系為:工作總量=工作效率工作時間

  6、行程問題:

  (1)行程問題中的三個基本量及其關(guān)系:路程=速度時間。

 。2)基本類型有

 、傧嘤鰡栴};

  ②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題。

  7、商品銷售問題

  有關(guān)關(guān)系式:

  商品利潤=商品售價商品進價=商品標價折扣率商品進價

  商品利潤率=商品利潤/商品進價

  商品售價=商品標價折扣率

  8、儲蓄問題

 。1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅

  (2)利息=本金利率期數(shù)

  本息和=本金+利息

  利息稅=利息稅率(20%)

  今天的內(nèi)容就介紹這里了。

初一數(shù)學知識點總結(jié)5

  第一章:豐富的圖形世界

  1、幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點、線、面、體

 、賻缀螆D形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 、邳c動成線,線動成面,面動成體。

  3、生活中的立體圖形

  生活中的立體圖形(按名稱分)

  柱:

  ①圓柱

 、诶庵喝庵⑺睦庵ㄩL方體、正方體)、五棱柱、……

  錐:

 、賵A錐

  ②棱錐

  球

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。

  5、正方體的平面展開圖:

  11種(經(jīng)?迹嚎荚囆问剑赫归_的圖形能否圍成正方體;正方體對面圖案)

  6、截一個正方體:

  用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  7、三視圖:

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  第二章:有理數(shù)及其運算

  1、有理數(shù)的分類

 、僬欣頂(shù)

  有理數(shù){ ②零

  ③負有理數(shù)

  有理數(shù){ ①整數(shù)

 、诜謹(shù)

  2、相反數(shù):

  只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

  4、倒數(shù):

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。

  5、絕對值:

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。

  若|a|=a,則a≥0;

  若|a|=-a,則a≤0。

  正數(shù)的絕對值是它本身;

  負數(shù)的絕對值是它的相反數(shù);

  0的絕對值是0。

  互為相反數(shù)的兩個數(shù)的絕對值相等。

  6、有理數(shù)比較大小:

  正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負數(shù),絕對值大的反而小。

  7、有理數(shù)的運算:

  ①五種運算:加、減、乘、除、乘方

  多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  異號兩數(shù)相加,絕對值值相等時和為0;

  絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  一個數(shù)同0相加,仍得這個數(shù)。

  互為相反數(shù)的兩個數(shù)相加和為0。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)。

 、谟欣頂(shù)的運算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

 、圻\算律(5種)

  加法交換律

  加法結(jié)合律

  乘法交換律

  乘法結(jié)合律

  乘法對加法的分配律

  8、科學記數(shù)法

  一般地,一個大于10的數(shù)可以表示成a×

  10n的形式,其中1≦n<10,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。(n=整數(shù)位數(shù)—1)

  第三章:整式及其加減

  1、代數(shù)式

  用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  注意:

  ①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

  代數(shù)式的書寫格式:

 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

  ③帶分數(shù)與字母相乘時,應(yīng)先把帶分數(shù)化成假分數(shù)。

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式;注意:分數(shù)線具有“÷”號和括號的雙重作用。

  ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  2、整式:單項式和多項式統(tǒng)稱為整式。

 、賳雾検剑

  都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  注意:

  單獨的一個數(shù)或一個字母也是單項式;

  單獨一個非零數(shù)的次數(shù)是0;

  當單項式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

  ②多項式:

  幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

 、弁愴棧

  所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  注意:

  ①同類項有兩個條件:a。所含字母相同;b。相同字母的指數(shù)也相同。

 、谕愴椗c系數(shù)無關(guān),與字母的'排列順序無關(guān);

  ③幾個常數(shù)項也是同類項。

  4、合并同類項法則:

  把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號法則

  ①根據(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。

 、诟鶕(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。

  7、整式的運算:

  整式的加減法:(1)去括號;(2)合并同類項。

  第四章基本平面圖形

  1、線段、射線、直線

  名稱

  表示方法

  端點

  長度

  直線

  直線AB(或BA)

  直線l

  無端點

  無法度量

  射線

  射線OM

  1個

  無法度量

  線段

  線段AB(或BA)

  線段l

  2個

  可度量長度

  2、直線的性質(zhì)

  ①直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

 、谶^一點的直線有無數(shù)條。

 、壑本是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

  3、線段的性質(zhì)

 、倬段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

 、趦牲c之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

 、劬段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

  4、線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉(zhuǎn)而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  7、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  9、角的性質(zhì)

 、俳堑拇笮∨c邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

 、诮堑拇笮】梢远攘,可以比較,角可以參與運算。

  10、平角和周角:

  一條射線繞著它的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所形成的角叫做平角。

  終邊繼續(xù)旋轉(zhuǎn),當它又和始邊重合時,所形成的角叫做周角。

  11、多邊形:

  由若干條不在同一條直線上的線段首尾順次相連組成的'封閉平面圖形叫做多邊形。

  連接不相鄰兩個頂點的線段叫做多邊形的對角線。

  從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。

  12、圓:

  平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。

  固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

  圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;

  由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。

  頂點在圓心的角叫做圓心角。

  第五章一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

 、俚仁降膬蛇呁瑫r加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

 、诘仁降膬蛇呁瑫r乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

  4、一元一次方程

  只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項:

  把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。

  6、解一元一次方程的一般步驟:

 、偃シ帜

 、谌ダㄌ

 、垡祈棧ò逊匠讨械哪骋豁椄淖兎柡,從方程的一邊移到另一邊,這種變形叫移項。)

 、芎喜⑼愴

 、輰⑽粗獢(shù)的系數(shù)化為1

  第六章數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。

  其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

  從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

  2、扇形統(tǒng)計圖

  扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計圖的特點

  條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

  折線統(tǒng)計圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

初一數(shù)學知識點總結(jié)6

  第一章有理數(shù)

  1.有理數(shù):

  (1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).p注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);正整數(shù)正整數(shù)正有理數(shù)正分數(shù)整數(shù)零

  (2)有理數(shù)的分類:

 、儆欣頂(shù)零

 、谟欣頂(shù)負整數(shù)負整數(shù)正分數(shù)負有理數(shù)分數(shù)負分數(shù)負分數(shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);

  a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).

  2.數(shù)軸:

  數(shù)軸是規(guī)定了原點、正方向、單位長度(數(shù)軸的三要素)的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-(a-b+c)=-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  (3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).(4)相反數(shù)的商為-1.

 。5)相反數(shù)的絕對值相等

  4.絕對值:

  (1)正數(shù)的絕對值等于它本身,0的絕對值是0,負數(shù)的絕對值等于它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  a(a0)a(a0)a(2)絕對值可表示為:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非負數(shù),即|a|≥0,非負性;

  5.有理數(shù)比大。

 。1)正數(shù)永遠比0大,負數(shù)永遠比0。

 。2)正數(shù)大于一切負數(shù);

 。3)兩個負數(shù)比較,絕對值大的反而小;

  (4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標準質(zhì)量的差,絕對值越小,越接近標準。

  6.倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);

  注意:0沒有倒數(shù);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).

  等于本身的數(shù)匯總:

  相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.

  7.有理數(shù)加法法則:X|k|b|1.c|o|m

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù).

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;

 。2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

 。2)任何數(shù)與零相乘都得零;

 。3)幾個因式都不為零,積的符號由負因式的個數(shù)決定.奇數(shù)個負數(shù)為負,偶數(shù)個負數(shù)為正。11有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;

 。2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義.

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

 。3)a是重要的非負數(shù),即a≥0;若a+|b|=0a=0,b=0;

 。4)正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0;負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

  0.120.01211

 。5)據(jù)規(guī)律2底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.10100222a0

  15.科學記數(shù)法:把一個大于10的數(shù)記成a×10的形式,其中a是整數(shù)數(shù)位只有一位的數(shù)即1≤a

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到那一位.

  17.混合運算法則:先乘方,后乘除,最后加減;注意:不省過程,不跳步驟。

  18.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.常用于填空,選擇。

  第二章整式的加減

  1.單項式:表示數(shù)字或字母乘積的式子,單獨的一個數(shù)字或字母也叫單項式。

  2.單項式的系數(shù)與次數(shù):單項式中的數(shù)字因數(shù),稱單項式的系數(shù)(要包括前面的符號);單項式中所有字母指數(shù)的和,叫單項式的次數(shù)(只與字母有關(guān))。

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);

  5.整式單項式多項式(整式是代數(shù)式,但是代數(shù)式不一定是整式)。

  6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項(與系數(shù)無關(guān),與字母的`排列順序無關(guān))。

  7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.

  9.整式的加減:一找:(標記);二“+”(務(wù)必用+號開始合并)三合:(合并)

  10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到。┡帕衅饋,叫做按這個字母的升冪排列(或降冪排列)。

  第三章一元一次方程

  1.等式:用“=”號連接而成的式子叫等式.2.等式的性質(zhì):

  等式性質(zhì)

  1:等式兩邊都加上(或減去)同一個數(shù)(或式子),結(jié)果仍相等;等式性質(zhì)

  2:等式兩邊都乘以(或除以)同一個不為零的數(shù),結(jié)果仍相等.

  3.方程:含未知數(shù)的等式,叫方程(方程是含有未知數(shù)的等式,但等式不一定是方程).

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”。

  5.移項:把等式一邊的某項變號后移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1(移項變號).

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

  7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  8.一元一次方程解法的一般步驟:化簡方程----------分數(shù)基本性質(zhì)

  去分母----------同乘(不漏乘)最簡公分母去括號----------注意符號變化移項----------變號(留下靠前)

  合并同類項--------合并后符號系數(shù)化為1---------除前面

  9.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  10.列方程解應(yīng)用題的常用公式:

 。1)行程問題:路程=速度時間速度路程路程時間;時間速度工作量工作量工時;工時工效

 。2)工程問題:工作量=工作效率工作時間工效工程問題常用等量關(guān)系:先做的+后做的=完成量

 。3)順水逆水問題:

  順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;順水逆水問題常用等量關(guān)系:順水路程=逆水路程

 。4)商品利潤問題:售價=定價幾折售價成本,利潤率100%;成本10利潤問題常用等量關(guān)系:售價-進價=利潤

 。5)配套問題:

 。6)分配問題

  第四章圖形初步認識

  (一)多姿多彩的圖形

  立體圖形:棱柱、棱錐、圓柱、圓錐、球等.

  1、幾何圖形平面圖形:三角形、四邊形、圓、多邊形等.

  主視圖---------從正面看

  2、幾何體的三視圖左視圖---------從左邊看俯視圖---------從上面看

  (1)會判斷簡單物體(棱柱、圓柱、圓錐、球)的三視圖.

 。2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?/p>

  3、立體圖形的平面展開圖

 。1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的

 。2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.

  4、點、線、面、體

 。1)幾何圖形的組成點:線和線相交的地方是點,它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.

 。2)點動成線,線動成面,面動成體.

 。ǘ┲本、射線、線段

  1、基本概念名稱直線射線線段aaa圖形ABBBAA端點個數(shù)表示法作法敘述延長無直線a直線AB(BA)作直線a作直線AB;向兩端無限延長一個射線a射線AB作射線a作射線AB向一端無限延長兩個線段a線段AB(BA)作線段a;作線段AB;連接AB不可延長

  2、直線的性質(zhì)經(jīng)過兩點有一條直線,并且只有一條直線.簡單地:兩點確定一條直線.

  3、畫一條線段等于已知線段

 。1)度量法

  (2)用尺規(guī)作圖法

  4、線段的長短比較方法

  (1)度量法

 。2)疊合法

  (3)圓規(guī)截取法

  5、線段的中點(二等分點)、三等分點、四等分點等定義:把一條線段平均分成兩條相等線段的點.圖形:

  AMB

  符號:若點M是線段AB的中點,則AM=BM=

  6、線段的性質(zhì)

  1AB,AB=2AM=2BM.

  兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.

  7、兩點的距離

  連接兩點的線段的長度叫做兩點的距離(距離是線段的長度,而不是線段本身)

  8、點與直線的位置關(guān)系

 。1)點在直線上(或者直線經(jīng)過點)

 。2)點在直線外(或者直線不經(jīng)過點).

  (三)角

  1、角:有公共端點的兩條射線所組成的圖形叫做角.

  2、角的表示法(四種):表示方法圖例記法適用范圍A任何情況下都適應(yīng)。表示端O用三個大寫字母表示AOB或BOAB點的字母必須寫在中間。以這個點為頂點的角只有用一個大寫字母表示AA一個。任何情況下都適用。但必須用數(shù)字表示11在靠近頂點處加上弧線表示角的范圍,并注上數(shù)字或用希臘字母表示希臘字母。

  3、角的度量單位及換算(度””、分””、秒””)60進制1=60=3600,1=60;1=(4、角的分類∠β范圍銳角直角鈍角0<∠β<90°∠β=90°90°

初一數(shù)學知識點總結(jié)7

  有理數(shù)

  1.1 正數(shù)與負數(shù)

  在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。

  與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。

  1.2 有理數(shù)

  正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。

  整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。

  通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。

  數(shù)軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。

  只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)

  數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻'規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  初中數(shù)學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

  ③雙重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

初一數(shù)學知識點總結(jié)8

  本章重點:一元一次不等式的解法,

  本章難點:了解不等式的解集和不等式組的解集的確定,正確運用不等式基本性質(zhì)3。

  本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.

  (1)不等式概念:用不等號(“≠”、“”)表示的不等關(guān)系的式子叫做不等式(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).

 。3)分清不等式的解集和解不等式是兩個完全不同的概念.(4)不等式的解一般有無限多個數(shù)值,把它們表示在數(shù)軸上,(5)一元一次不等式的概念、解法是本章的重點和核心

 。6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集

 。7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數(shù)的)一元一次不等式組成(8).利用數(shù)軸確定一元一次不等式組的解集第六章:

  1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數(shù)的值,會檢驗一對數(shù)值是不是某一個二元一次方程組的解.

  2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.

  3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實際意義,檢查結(jié)果是否合理.本章的重點是:二元一次方程組的解法代入法,加減法以及列一次方程組解簡單的應(yīng)用問題.

  本章的難點是:

  1.會用適當?shù)南椒ń舛淮畏匠探M及簡單的三元一次方程組;2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.第七章

  本章重點是:整式的乘除運算,特別是對冪的.運算及乘法公式的應(yīng)用要達到熟練程度.本章難點是:對乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用1.冪的運算性質(zhì),正確地表述這些性質(zhì),并能運用它們熟練地進行有關(guān)計算.

  2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.

  3.乘法公式的推導(dǎo)過程,能靈活運用乘法公式進行計算.4.熟練地運用運算律、運算法則進行運算,

  5.體會用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.第八章:

  1、認識事物的幾種方法:觀察與實驗歸納與類比猜想與證明生活中的說理數(shù)學中的說理

  2、定義、命題、公理、定理3、簡單幾何圖形中的推理4、余角、補交、對頂角5、平行線的判定判定:一個公理兩個定理。

  公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:內(nèi)錯角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:同旁內(nèi)角互補(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).平行線的性質(zhì):

  兩直線平行,同位角相等兩直線平行,內(nèi)錯角相等兩直線平行,同旁內(nèi)角互補

  由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”第九章:

  重點:因式分解的方法,

  難點:分析多項式的特點,選擇適合的分解方法1.因式分解的概念;

  2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)3.運用因式分解解決一些實際問題.(包括圖形習題)第十章:

  重點是:用統(tǒng)計知識解決現(xiàn)實生活中的實際問題.難點是:用統(tǒng)計知識解決實際問題.

  1.統(tǒng)計初步的基本知識,平均數(shù)、中位數(shù)、眾數(shù)等的計算、2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計圖.

  3.應(yīng)用統(tǒng)計知識解決實際問題能解決與統(tǒng)計相關(guān)的綜合問題.

初一數(shù)學知識點總結(jié)9

  一、隋唐科舉制度:

  北:P20科舉制是通過分科考試選拔官吏的制度。隋唐時期創(chuàng)立并完善了科舉制度,強調(diào)以才能作為選官標準的原則。

  二、武則天

  北:P13—15武則天是我國歷的女皇帝。

  武則天統(tǒng)治時期,不拘一格選拔普通地主中的優(yōu)秀人才。注重減輕農(nóng)民負擔,采取各種措施促進社會生產(chǎn)斷續(xù)發(fā)。當時,人口明顯增長,邊疆得到鞏固和開拓,史稱有“貞觀遺風”,為唐朝全盛時期的到來奠定了基礎(chǔ)。

  三、“開元盛世”

  北:P15唐玄宗統(tǒng)治前期政局穩(wěn)定,經(jīng)濟繁榮,被譽為“開元盛世”。

  四、唐與吐蕃的交往:

  P28吐蕃是今藏族祖先。文成公主入藏與松贊干布聯(lián)姻,密切了唐蕃經(jīng)濟文化的交流。

  五、遣唐使、玄奘西行、鑒真東渡

 。ㄒ唬┣蔡剖

  北:P32遣唐使是日本政府派遣到唐朝進行文化交流的使團;遣唐使把唐朝的典章制度、天文歷法、書法藝術(shù)、建筑藝術(shù)以及生活習俗等帶回本國,對日本的生產(chǎn)、生活與社會發(fā)展產(chǎn)生了深遠影響。

  (二)鑒真東渡

  北:P33鑒真到達日本除講授佛經(jīng),還詳細介紹中斬醫(yī)藥、建筑、雕塑、文學、書法、繪畫等技術(shù)知識,對中日經(jīng)濟文化交流做出了杰出貢獻。(識圖P34鑒真東渡示意圖)

  (三)玄奘西行

  北:P35玄奘是唐朝的高僧,為了求取佛經(jīng)精義,他西行前往佛教圣地天竺。玄奘是第一個系統(tǒng)地把天竺佛教、歷史、地理、風土人情等記錄下來并介紹到中國的人。(玄奘西行示意圖)

  六、列舉“貞觀之治”的主要內(nèi)容,評價唐太宗:

  經(jīng)濟重心的南移和民族關(guān)系的發(fā)展

  一、中國古代經(jīng)濟重心的南移

  北:P64魏晉南北朝以來,全國經(jīng)濟重心出現(xiàn)了南移的趨勢。兩宋時全國的經(jīng)濟重心從黃河流域轉(zhuǎn)移到長江流域。

  二、成吉思汗統(tǒng)一蒙古和忽必烈建立元朝的史實

  北:P75—7612,蒙古貴族在斡難河源召開大會,推舉鐵木真為蒙古族的首領(lǐng),尊稱為“成吉思汗”,建立蒙古政權(quán)1260年,成吉思汗之孫忽必烈繼承蒙古汗位。1271年,忽必烈改國號為元,建立元朝,第二年定都大都。忽必烈為元世祖。

  歷史學習方法技巧

  一、學會聽課

  用新的方式聽老師復(fù)習階段的輔導(dǎo)課。復(fù)習階段聽老師講課,聽什么?聽思路,聽提煉,聽挖掘,聽補充、聽小結(jié),聽解題方法的指導(dǎo)。聽課過程中,一有所得,當即記于課本天頭地腳處,以供備忘,正如“好記性不如爛筆頭”。

  二、學會課后自己整理教材

  在歷史能力測試中,分成兩個部分:一是閉卷的選擇題;一是開卷的材料分析題。主要考察同學對歷史史實的認知和遷移以及運用基本的歷史方法解決問題的能力,包括對歷史知識的識記、理解和運用。千變?nèi)f化的能力測試題都離不開考察你對教材的認識。所以,要以不變應(yīng)萬變,抓住教材為本。在整理教材的過程中注意以下幾方面:

 。1)知識主干化。在知識結(jié)構(gòu)的框架下,記住其中的主干知識,不要孤立的記憶它。所謂的主干知識,是指按課標要求掌握的重大歷史事件(或人物)的內(nèi)容和影響(或作用)。表現(xiàn)在課文中,即是每一課子目的核心內(nèi)容。這些內(nèi)容不多,記住的目的是為了突出重點,并能由此而鏈接更多的知識點,提高對知識的積累量,進而提高分析問題的能力和效力,以及準確性。這部分往往會在閉卷的選擇題部分來考察。

 。2)知識線索化。在對每一單元知識結(jié)構(gòu)整理的基礎(chǔ)上,聯(lián)系比較上一單元和下一單元的知識,整理出本冊書的知識線索,這需要在老師的引導(dǎo)下完成。在知識線索下,加強對知識因果關(guān)系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨證、多角度地分析。并要注意這些歷史對今天社會建設(shè)中的啟示。這類知識一般在開卷部分以材料為載體多重設(shè)問來體現(xiàn)。有的同學往往認為歷史考試中有很大部分是開卷的,所以沒必要抓教材,殊不知,在考試中時間緊,如果對教材沒整體認識和熟悉,根本沒法在短短的時間內(nèi)完成檢測內(nèi)容。因此,教材知識的線索化這個環(huán)節(jié)尤其重要。

 。3)注意教材中的插圖、文獻材料和注釋和課文中補充的.小字。課文中的插圖:可以用來加深對課文中相關(guān)知識的理解。首先,要善于觀察,抓住其中隱含的歷史信息。其次,掌握一些識圖的技巧,如,注意地形圖中的圖示含義、線條的走向和古今地名國名的變化;了解人物圖中的神態(tài);發(fā)現(xiàn)景物圖中的細節(jié)和特征等。文獻材料:一般在課文中用黑體字表現(xiàn),它是史實來源的第一手材料或第二手材料,學習時,注意其出處,聯(lián)系課文相關(guān)內(nèi)容,解讀其中語句的含義,這樣能幫助我們提高閱讀能力,形成論從史出、史證結(jié)合的學習方法。小字部分往往容易在檢測中以材料的形式出現(xiàn),考查學生的歸納和知識遷移能力。這個環(huán)節(jié)的培養(yǎng)有利于我們在考場上把沒見過的材料與我們所學的知識結(jié)合起來。

  三、注意歷史復(fù)習中的記憶方法。

  許多歷史知識需要記憶。有好的記憶方法,就能收到事半功倍的效果。歷史知識的記憶法很多,最常用最有效的記憶方法有以下幾種:濃縮記憶法、圖示記憶法、數(shù)字歸納記憶法、聯(lián)想比較記憶法。

初一數(shù)學知識點總結(jié)10

  1.同一平面內(nèi),兩直線不平行就相交。

  2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互

  為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。

  3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其

  中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。4.垂直三要素:垂直關(guān)系,垂直記號,垂足

  5.垂直公理:過一點有且只有一條直線與已知直線垂直。6.垂線段最短;

  7.點到直線的距離:直線外一點到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯角Z(在

  兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點有且只有一條直線與已知直線平行。

  10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題

  11.平行線的判定。結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):

  1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯角相等。3.兩直線平行,同旁內(nèi)角互補。

  12.★命題:“如果+題設(shè),那么+結(jié)論!

  三角形和多邊形

  1.三角形內(nèi)角和為180°

  2.構(gòu)成三角形滿足的條件:三角形兩邊之和大于第三邊。

  判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構(gòu)成三角形,否則(a+bc)不能構(gòu)成三角形(即三角形最短的兩邊之和大于最長的邊)

  3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應(yīng)有三條底邊,任取其中一組底和高,21三角形同一個面積公式就有三個表示方法,任取其中兩個寫成連等(可兩邊同時2消去)底高

  2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD

  是斜邊AB

  上的高,則有ACBCCDAB

  A

  CB1D【重點題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關(guān)系(如成比例或相等)

  【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點題目】P695題7.外角:

  【基礎(chǔ)知識】什么是外角?外角定理及其推論【重點題目】P75例2P765、6、8題8.n邊形的★內(nèi)角和★外角和√對角線條數(shù)為

  【基礎(chǔ)知識】正多邊形:各邊相等,各角相等;正n邊形每個內(nèi)角的度數(shù)為【重點題目】P83、P84練習1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個拼接點,各圖形組成一個周角(不重疊,無空隙)。

  單一正多邊形的鑲嵌:鑲嵌圖形的每個內(nèi)角能被360整除:只有6個等邊三角形(60),4個正方形(90),3個正六邊形(120)三種

 。▋煞N正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個內(nèi)角度數(shù)為的正多邊形與

  0000m個內(nèi)角度數(shù)為的正多邊形圍繞一個拼接點組成一個周角,即混合鑲嵌。

  【例】用正三角形與正方形鋪滿地面,設(shè)在一個頂點周圍有m個正三角形、n個正方形,則m,n的值分別為多少?

  平面直角坐標系

  ▲基本要求:在平面直角坐標系中1.給出一點,能夠?qū)懗鲈擖c坐標2.給出坐標,能夠找到該點

  ▲建系原則:原點、正方向、橫縱軸名稱(即x、y)

  √語言描述:以…(哪一點)為原點,以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標系

  ▲基本概念:有順序的兩個數(shù)組成的數(shù)對稱為(有序數(shù)對)【三大規(guī)律】1.平移規(guī)律★

  點的平移規(guī)律(P51歸納)

  例將P(2,3)向左平移3個單位,向上平移5個單位得到點Q,則Q點的坐標為圖形的平移規(guī)律(P52歸納)

  重點題目:P53練習;P543、4題;P557題。2.對稱規(guī)律▲

  關(guān)于x軸對稱,縱坐標取相反數(shù)關(guān)于y軸對稱,橫坐標取相反數(shù)

  關(guān)于原點對稱,橫、縱坐標同時取相反數(shù)

  例:P點的坐標為(5,7),則P點

 。1.)關(guān)于x軸對稱的`點為(2.)關(guān)于y軸的對稱點為(3.)關(guān)于原點的對稱點為3.位置規(guī)律★

  假設(shè)在平面直角坐標系上有一點P(a,b)y1.如果P點在第一象限,有a>0,b>0(橫、縱坐標都大于0)第二象限第一象限2.如果P點在第二象限,有a0(橫坐標小于0,縱坐標大于0)X3.如果P點在第三象限,有a5.小長方形的面積表示頻數(shù)。縱軸為頻數(shù)。等距分組時,通常直接用小長方形的高表示頻數(shù),即縱

  組距軸為“頻數(shù)”

  6.頻數(shù)分布折線圖√根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:①取每個小長方形的上邊的中點,以及x

  軸上與最左、最右直方相距半個組距的點。②連線【重點題目】P1693、4題

  二元一次方程組和不等式、不等式組

  1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分)

  3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實際問題。關(guān)鍵:找等量關(guān)系常見的類型有:分配問題P1185題;P1084、5題;P102練習3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習2;P1082題;藥物配制P1087題;行程問題P99練習4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(zhì)(重點是性質(zhì)三)P1285、7題6.利用不等式的性質(zhì)解不等式,并把解集在數(shù)軸上表示出來(課本上的練例、習題)P1342

  步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習2;P123練習28.利用數(shù)軸或口訣解不等式組(課本上的例、習題)

  數(shù)軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小小(于)大取中間,大(于)大。ㄓ冢┬。獠灰娏。

  9.列不等式(組)解決實際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補充完整:不等式組

  4

  在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取小;x>ax<b空集大大小小不見了。

初一數(shù)學知識點總結(jié)11

  二元一次方程組

  1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.

  2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.

  3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有唯一解(即公共解).4.二元一次方程組的解法:(1)代入消元法;(2)加減消元法;(3)注意:判斷如何解簡單是關(guān)鍵.※5.一次方程組的應(yīng)用:

 。1)對于一個應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列

  易解”;

 。2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;

 。3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知

  數(shù)的關(guān)系.

  一元一次不等式(組)

  1.不等式:用不等號“>”“<”“≤”“≥”“≠”,把兩個代數(shù)式連接起來的式子叫不等式.2.不等式的基本性質(zhì):

  不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變.

  3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不

  博源教育曾老師1378780036612

  等式的解集.

  4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b>0或ax+b<0,(a≠0).

  5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)

  3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.

  6.一元一次不等式組:含有相同未知數(shù)的幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組;

  注意:ab>0

  abab0a0b0或a0b0;

  amamab<0

  0a0b0或a0b0;ab=0a=0或b=0;a=m.

  7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個一元一次不等式組的解集;解一元一次不等式時,應(yīng)分別求出這個不等式組中各個不等式的解集,再利用數(shù)軸確定這個不等式組的解集.

  8.一元一次不等式組的解集的四種類型:設(shè)a>b

  xaxb不等式組的解集xaxb是xa不等式的組解集是xbba>ba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數(shù)xy0ba>,

  9.幾個重要的判斷:,

  xy0x、y是負數(shù)xy0xy0x、y異號且正數(shù)絕對值大,xy0-2-

  xy0x、y異號且負數(shù)絕對值大xy0.博源教育曾老師1378780036613

  整式的乘除

  1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加.

  2.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項式的乘法:系數(shù)相乘,相同字母相乘,只在一個因式中含有的字母,連同指數(shù)寫在積里.4.單項式與多項式的乘法:m(a+b+c)=ma+mb+mc,用單項式去乘多項式的每一項,再把所得的積相加.5.多項式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.6.乘法公式:

  (1)平方差公式:(a+b)(a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;(2)完全平方公式:

 、(a+b)=a+2ab+b,兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數(shù)差的平方,等于它們的'平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

  p(1)若二次三項式x+px+q是完全平方式,則有關(guān)系式:22

  222

  2q;

 。2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號;②當x=h時,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22

  21x21xx22.

  8.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減.9.零指數(shù)與負指數(shù)公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0).注意:00,0-2無意義;

  博源教育曾老師1378780036614

  (2)有了負指數(shù),可用科學記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5.

  10.單項式除以單項式:系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個因式.

  11.多項式除以單項式:先用多項式的每一項除以單項式,再把所得的商相加.

  ※12.多項式除以多項式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運算:先乘方,后乘除,最后加減,有括號先算括號內(nèi).線段、角、相交線與平行線

  幾何A級概念:(要求深刻理解、熟練運用、主要用于幾何證明)

  1.角平分線的定義:一條射線把一個角分成兩個相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點的定義:幾何表達式舉例:(1)∵C是AB中點∴AC=BCCB點C把線段AB分成兩條相等的線段,點C叫線段中點.(如圖)A(2)∵AC=BC∴C是AB中點3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

  博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達式舉例:∵a=cb=c∴a=b5.補角重要性質(zhì):同角或等角的補角相等.(如圖)13幾何表達式舉例:∵a=cb=d又∵c=d∴a=b幾何表達式舉例:∵a=c+db=c+d∴a=b幾何表達式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質(zhì):同角或等角的余角相等.(如圖)幾何表達式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對頂角性質(zhì)定理:對頂角相等.(如圖)CAOBD幾何表達式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個角,有一個角是直角,這兩條直線互相垂直.(如圖)AC幾何表達式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內(nèi)錯角相等,兩條直線平行;(如圖)

  -6-

  幾何表達式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內(nèi)角互補,兩條直線平行.(如圖)11.平行線性質(zhì)定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內(nèi)錯角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補.(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題)

  一基本概念:

  直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補角、互為余角、鄰補角、兩點間的距離、相交線、平行線、垂線段、垂足、對頂角、延長線與反向延長線、同位角、內(nèi)錯角、同旁內(nèi)角、點到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理:

  1.直線公理:過兩點有且只有一條直線.2.線段公理:兩點之間線段最短.

  3.有關(guān)垂線的定理:

 。1)過一點有且只有一條直線與已知直線垂直;

 。2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.4.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行.

  博源教育曾老師1378780036618

  三公式:

  直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識:

  1.定義有雙向性,定理沒有.

  2.直線不能延長;射線不能正向延長,但能反向延長;線段能雙向延長.

  3.命題可以寫為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結(jié)論.

  4.幾何畫圖要畫一般圖形,以免給題目附加沒有的條件,造成誤解.5.數(shù)射線、線段、角的個數(shù)時,應(yīng)該按順序數(shù),或分類數(shù).

  6.幾何論證題可以運用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角:

初一數(shù)學知識點總結(jié)12

  第一章:有理數(shù)

  ★0既不是正數(shù),也不是負數(shù)。0是正數(shù)和負數(shù)的分界。★整數(shù)的概念:正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)。★分數(shù)的概念:正負數(shù)和負分數(shù)統(tǒng)稱為分數(shù)!镉欣頂(shù)的概念:整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。

  ★數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的一條直線叫數(shù)軸。

  (1)在直線上任意取一點表示數(shù)0,這個點叫做原點;

 。2)通常規(guī)定直線上從原點向右(上)為正方向,從原點向左(或下)為負方向;(3)選取適當?shù)拈L度為單位長度,直線上從原點向右,每隔一個單位長度取一個點,

  依次表示1,2,3,---;從原點向左,用類似的方法依次表示-1,-2,-3。

  ★相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0;橄喾磾(shù)的兩個點關(guān)于原點對稱。

  ★絕對值的概念:一般地,數(shù)軸上表示數(shù)的a的點與原點的距離叫做數(shù)a的絕對值。記作a。

  由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  ★有理數(shù)比較大。涸跀(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。所以由這個規(guī)定可知:(1)正數(shù)大于0,0大于負數(shù);正數(shù)大于負數(shù);(2)兩個負數(shù),絕對值大的反而小。

  備注:異號兩數(shù)比較大小,要考慮它們的正負;同號兩數(shù)比較大小,要考慮它們的絕對值。

  ★有理數(shù)加法法則:

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3、一個數(shù)同0相加,仍是這個數(shù)。

  ★有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。加法交換律:a+b=b+a.★有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。加法結(jié)合律:(a+b)+c=a+(b+c)!窘Y(jié)合原則:同號結(jié)合;同分母結(jié)合;互為相反數(shù)結(jié)合;湊整結(jié)合。】

  ★有理數(shù)減法法則:減去一個數(shù),就等于加上這個數(shù)的相反數(shù)。即:a-b=a+(-b).

  ★有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)同0相乘都得0。

  備注:幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù)。

  ★有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。

  ★一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積不變。乘法交換率:abba;三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積不變。乘法結(jié)合律:(ab)ca(bc)。

  ★一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同中兩個數(shù)相乘,再把積相加。分配律:a(bc)abac

  ★有理數(shù)除法法則:除以一個不等于0的'數(shù),等于乘上這個數(shù)的倒數(shù)。

  備注:從有理數(shù)除法法則容易得出:兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

  ★有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。a的n次方也可以讀作a的n次冪。

  備注:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

  正數(shù)的任何次冪都是正數(shù)。0的任何正整數(shù)次冪都是0。

  ★有理數(shù)的混合運算,應(yīng)注意以下運算順序:先乘方,再乘除,最后加減。2。同級運算,從左到右依次計算。3。如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次計算。

  ★科學計數(shù)法:把一個大于10的數(shù)表示成ax10(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù))

  ★近似數(shù)與準確數(shù)的接近程度,可以用精確度表示。

  ★有效數(shù)字:從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字。

  第二章:整式的加減(為一元一次方程的學習打下基礎(chǔ))

  ◆單項式概念:比如100t、a的平方、2.5x、vt,-n,它們都是數(shù)或者字母的積,像這樣的式子叫做單項式。單獨的一個數(shù)或一個字母也是單項式。單項式中數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  ◆一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  ◆多項式的概念:幾個單項式的和叫做多項式。其中每個單項式叫做多項式的項,不存在字母的項叫做常數(shù)項。

  ◆多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。◆整式的概念:單項式與多項式統(tǒng)稱整式。

  ◆同類項概念:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。幾個常數(shù)項也是同類項。

  ◆把多項式中的同類項合并成一項,叫做合并同類項。

  ◆合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)之和,且字母部分不變。◆去括號法則:

  如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。

  第三章:一元一次方程

  ▲含有未知數(shù)的等式叫方程(equation)。

  ▲使方程左右兩邊相等的未知數(shù)的值,叫做方程的解(solution)。▲只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程。▲等式的性質(zhì):1、等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

  2、等式;兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等!靡辉淮畏匠谭治龊徒鉀Q實際問題的基本過程如下:

  (實際問題)設(shè)未知數(shù),列方程數(shù)學問題(一元一次方程)解方程(數(shù)學問題的解)檢驗(實際問題的答案)。

  ▲解方程的具體步驟:1、去分母(方程兩邊同乘各分母的最小公倍數(shù));2、去括號(去括號法則);3、移項(定義);4、合并同類項(法則,同類項的定義);5、系數(shù)化為1。

  ▲實際問題與一元一次方程:一元一次方程是最簡單的方程。運用方程解決問題的關(guān)鍵是分析問題中的數(shù)量關(guān)系,找出其中的相等關(guān)系,并由此列出方程。

  第四章:圖形認識的初步

  ※我們把從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。幾何圖形是數(shù)學研究的主要對象

  之一。幾何圖形又分為立體圖形和平面圖形。

  ※長方體、正方體、圓柱、圓錐、球、棱錐等都是幾何體。幾何體也簡稱體(solid)。包圍著體的是面(surface)。面有平面和曲面。

  ※幾何圖形都是由點、線、面、體組成的,點是構(gòu)成圖形的基本元素!(jīng)過兩點有一條直線,并且只有一條直線。簡述:兩點確定一條直線!本一般用1個小寫字母表示或者用直線上的兩個大寫字母表示!渚和線段都是直線的一部分。類似于直線的表示。

  ※兩點的所有連線中,線段最短。簡述:兩點之間,線段最短!B接兩點間的線段的長度,叫做中兩點的距離(distance)。

  ※在國際單位制中,長度的基本單位是米(m)。常用的單位還有千米、分米、厘米、毫米、微米等。

  1納米等于十億分之一米。

  ※在天文學上,常用天文單位和光年計算星體間的距離。1天文單位是地球到太陽的平812

  均距離,約1.5x10千米,1光年就是光1年走過的距離,約等于9.46x10千米。

  ※航海上經(jīng)常用到的長度單位海里(1海里=1852米);※有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共點叫做角的頂點,這兩條射線是角的兩條邊。

  ※我們常用量角器量角,度(degree)、分、秒是常用的角的度量單位。

  ※角的度、分、秒是60進制的。以度、分、秒為單位的角的度量制,叫做角度制!S玫牧拷枪ぞ哂校拷瞧,工程常用的經(jīng)緯儀。

  ※從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。

  ※余角(complementaryangle):如果兩個角的和等于90度(直角),就說中這兩個角互為余角,即其中每一個角是另一個角的余角。余角的性質(zhì):等角的余角相等。

  ※補角(supplementaryangle):如果兩個角的和等于180度(平角),就說這兩個角互為補角,其中一個角是另一個角的補角。補角的性質(zhì):等角的補角相等。

  ※上北下南;左西右東。西北,即是北偏西45度。

  第五章平行線與相交線

  一.臺球桌面上的角

  ※1.互為余角和互為補角的有關(guān)概念與性質(zhì)

  如果兩個角的和為90°(或直角),那么這兩個角互為余角;如果兩個角的和為180°(或平角),那么這兩個角互為補角;

  注意:這兩個概念都是對于兩個角而言的,而且兩個概念強調(diào)的是兩個角的數(shù)量關(guān)系,與兩個角的相互位置沒有關(guān)系。

  它們的主要性質(zhì):同角或等角的余角相等;同角或等角的補角相等。

  二.探索直線平行的條件

  ※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:①同位角相等,兩直線平行;②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行。

  三.平行線的特征

  ※平行線的特征即平行線的性質(zhì)定理,共有三條:①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補。

  四.用尺規(guī)作線段和角※

  1.關(guān)于尺規(guī)作圖

  尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。

  ※2.關(guān)于尺規(guī)的功能

  直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。

  圓規(guī)的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。

初一數(shù)學知識點總結(jié)13

  1、單項式的定義:

  由數(shù)或字母的積組成的式子叫做單項式。

  說明:單獨的一個數(shù)或者單獨的一個字母也是單項式.

  2、單項式的系數(shù):

  單項式中的數(shù)字因數(shù)叫這個單項式的系數(shù).

  說明:

  ⑴單項式的系數(shù)可以是整數(shù),也可能是分數(shù)或小數(shù)。如3x的系數(shù)是3的32

  系數(shù)是1;4.8a的系數(shù)是4.8; 3

 、茊雾検降南禂(shù)有正有負,確定一個單項式的系數(shù),要注意包含在它前面的符號,4xy2的系數(shù)是4;2x2y的系數(shù)是4;

  ⑶對于只含有字母因數(shù)的單項式,其系數(shù)是1或-1,不能認為是0,如ab的系數(shù)是-1;ab的系數(shù)是1;

  ⑷表示圓周率的π,在數(shù)學中是一個固定的常數(shù),當它出現(xiàn)在單項式中時,應(yīng)將其作為系數(shù)的'一部分,而不能當成字母。如2πxy的系數(shù)就是2。

  3、單項式的次數(shù):

  一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).

  說明:

 、庞嬎銌雾検降拇螖(shù)時,應(yīng)注意是所有字母的指數(shù)和,不要漏掉字母指數(shù)是1

  的情況。如單項式2xyz的次數(shù)是字母z,y,x的指數(shù)和,即4+3+1=8,而不是7次,應(yīng)注意字母z的指數(shù)是1而不是0;

 、茊雾検降闹笖(shù)只和字母的指數(shù)有關(guān),與系數(shù)的指數(shù)無關(guān)。

  ⑶單項式是一個單獨字母時,它的指數(shù)是1,如單項式m的指數(shù)是1,單項式是單獨的一個常數(shù)時,一般不討論它的次數(shù);

  4、在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作“x ”或者省略不寫。

  5、在書寫單項式時,數(shù)字因數(shù)寫在字母因數(shù)的前面,數(shù)字因數(shù)是帶分數(shù)時轉(zhuǎn)化成假分數(shù).。

初一數(shù)學知識點總結(jié)14

  相反數(shù)

  (1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

  (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.

  (3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,有偶數(shù)個“﹣”號,結(jié)果為正.

  (4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號.

  2代數(shù)式求值

  (1)代數(shù)式的:用數(shù)值代替代數(shù)式里的字母,計算后所得的結(jié)果叫做代數(shù)式的值.

  (2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.

  題型簡單總結(jié)以下三種:

 、僖阎獥l件不化簡,所給代數(shù)式化簡;

 、谝阎獥l件化簡,所給代數(shù)式不化簡;

 、垡阎獥l件和所給代數(shù)式都要化簡.

  3由三視圖判斷幾何體

  (1)由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的`前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.

  (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

  ①根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,以及幾何體的長、寬、高;

 、趶膶嵕和虛線想象幾何體看得見部分和看不見部分的輪廓線;

  ③熟記一些簡單的幾何體的三視圖對復(fù)雜幾何體的想象會有幫助;

 、芾糜扇晥D畫幾何體與有幾何體畫三視圖的互逆過程,反復(fù)練習,不斷總結(jié)方法

初一數(shù)學知識點總結(jié)15

  初一數(shù)學(上)應(yīng)知應(yīng)會的知識點代數(shù)初步知識

  1.代數(shù)式:用運算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式.2.列代數(shù)式的幾個注意事項:

 。1)數(shù)與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應(yīng)寫成a;

 。5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.

  3.幾個重要的代數(shù)式:(m、n表示整數(shù))

 。1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;

 。4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.有理數(shù)1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);(2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;(3);;

  (4)|a|是重要的非負數(shù),即|a|≥0;注意:|a||b|=|ab|,.

  5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的'符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數(shù)同零相乘都得零;(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

  11有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);

 。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;(3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0a=0,b=0;(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.

  15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則.

  19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:.

  6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.

  9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.一元一次方程

  1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

  7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數(shù)化為1(檢驗方程的解).10.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  11.列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離=速度時間;(2)工程問題:工作量=工效工時;(3)比率問題:部分=全體比率;

 。4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折,利潤=售價-成本,;

 。6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h.

【初一數(shù)學知識點總結(jié)】相關(guān)文章:

數(shù)學初一知識點總結(jié)07-04

初一數(shù)學下知識點總結(jié)12-07

初一數(shù)學知識點的總結(jié)11-07

初一數(shù)學下冊知識點總結(jié)11-29

初一數(shù)學棱錐知識點總結(jié)11-29

初一數(shù)學知識點總結(jié)07-11

人教版初一數(shù)學知識點總結(jié)04-24

(薦)初一數(shù)學知識點總結(jié)07-12

【必備】初一數(shù)學重要的知識點總結(jié)11-21

初一數(shù)學上冊知識點總結(jié)11-23