(經(jīng)典)初一數(shù)學(xué)知識點總結(jié)
總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認識的一種書面材料,通過它可以正確認識以往學(xué)習(xí)和工作中的優(yōu)缺點,因此我們需要回頭歸納,寫一份總結(jié)了。那么總結(jié)有什么格式呢?以下是小編精心整理的初一數(shù)學(xué)知識點總結(jié),希望能夠幫助到大家。
初一數(shù)學(xué)知識點總結(jié)1
代數(shù)初步知識
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.
3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.
有理數(shù)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a0,小數(shù)-大數(shù)第三篇: 初一上學(xué)期數(shù)學(xué)知識點總結(jié)
第二章:整式的加減
1、單項式:;單獨的一個數(shù)或一個字母也是單項式
2、系數(shù):;
3、單項式的次數(shù):;
4、多項式:;
叫做多項式的項;的項叫做常數(shù)項。
5、多項式的次數(shù):;
6、整式:;
7、同類項:;
8、把多項式中的同類項合并成一項,叫做合并同類項;
合并同類項后,所得項的系數(shù)是合并同前各同類項的系數(shù)的和,且字母部分不變。
9、去括號:(1)如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同
(2)如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反
10、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項
第三章:一次方程(組)
一、方程的.有關(guān)概念
1、方程的概念:
(1)含有未知數(shù)的等式叫方程。
(2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。
2、等式的基本性質(zhì):
(1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。
(2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。若a=b,則ac=bc或
二、解方程
1、移項的有關(guān)概念:
把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項。這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號。
2、解一元一次方程的步驟:
解一元一次方程的步驟
主要依據(jù)
1、去分母
等式的性質(zhì)2
2、去括號
去括號法則、乘法分配律
3、移項
等式的性質(zhì)1
4、合并同類項
合并同類項法則
5、系數(shù)化為1
等式的性質(zhì)2
6、檢驗
3、二元一次方程組
(1)將二元一次方程用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);
(2)解二元一次方程組的指導(dǎo)思想是轉(zhuǎn)化的思想;
(3)解二元一次方程組的方法有:加減消元法;代入消元法;
二、列方程解應(yīng)用題
1、列方程解應(yīng)用題的一般步驟:
(1)將實際問題抽象成數(shù)學(xué)問題;
(2)分析問題中的已知量和未知量,找出等量關(guān)系;
(3)設(shè)未知數(shù),列出方程;
(4)解方程;
(5)檢驗并作答。
2、一些實際問題中的規(guī)律和等量關(guān)系:
(1)幾種常用的面積公式:
長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;
梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積;
圓形的面積公式:,r為圓的半徑,S為圓的面積;
三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。
(2)幾種常用的周長公式:
長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。
正方形的周長:L=4a,a為正方形的邊長,L為周長。
圓:L=2πr,r為半徑,L為周長。
初一數(shù)學(xué)知識點總結(jié)2
拋物線的性質(zhì):
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的`開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
焦半徑:
焦半徑:拋物線y2=2px(p>0)上一點P(x0,y0)到焦點Fè÷p2,0的距離|PF|=x0+p2.
求拋物線方程的方法:
(1)定義法:根據(jù)條件確定動點滿足的幾何特征,從而確定p的值,得到拋物線的標準方程。
(2)待定系數(shù)法:根據(jù)條件設(shè)出標準方程,再確定參數(shù)p的值,這里要注意拋物線標準方程有四種形式。從簡單化角度出發(fā),焦點在x軸的,設(shè)為y2=ax(a≠0),焦點在y軸的,設(shè)為x2=by(b≠0).
初一數(shù)學(xué)知識點總結(jié)3
1、相反數(shù)
只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。
注意:
⑴相反數(shù)是成對出現(xiàn)的;
、葡喾磾(shù)只有符號不同,若一個為正,則另一個為負;
⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2、相反數(shù)的性質(zhì)與判定
、拧⒑螖(shù)都有相反數(shù),且只有一個;
⑵0的相反數(shù)是0;
、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3、相反數(shù)的幾何意義
在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的'對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。
4、相反數(shù)的求法
、徘笠粋數(shù)的相反數(shù),只要在它的前面添上負號“—”即可求得(如:5的相反數(shù)是—5);
、魄蠖鄠數(shù)的和或差的相反數(shù)時,要用括號括起來再添“—”,然后化簡(如;5a+b的相反數(shù)是—(5a+b);喌谩5a—b);
⑶求前面帶“—”的單個數(shù),也應(yīng)先用括號括起來再添“—”,然后化簡(如:—5的相反數(shù)是—(—5),化簡得5)
5、相反數(shù)的表示方法
、乓话愕兀瑪(shù)a的相反數(shù)是—a,其中a是任意有理數(shù),可以是正數(shù)、負數(shù)或0。
當a>0時,—a<0(正數(shù)的相反數(shù)是負數(shù))
當a<0時,—a>0(負數(shù)的相反數(shù)是正數(shù))
當a=0時,—a=0,(0的相反數(shù)是0)
初一數(shù)學(xué)知識點總結(jié)4
初一下冊知識點總結(jié)
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;
(2)完全平方公式:
、 (a+b)2=a2+2ab+b2, 兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
、 (a-b)2=a2-2ab+b2 , 兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項式x2+px+q是完全平方式,則有關(guān)系式: ;
※ (2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);
系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)。
8.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的`項;
多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。
9.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。
10.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。
11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。
注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列。
平面幾何部分
1、補角重要性質(zhì):同角或等角的補角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點有且只有一條直線.
線段公理:兩點之間線段最短.
、谟嘘P(guān)垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角
4、n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
、賏+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對應(yīng)周長取值范圍:
若兩邊分別為a,b則周長的取值范圍是 2a
如兩邊分別為5和7則周長的取值范圍是 14
9、相關(guān)命題:
(1) 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長)、形狀都相同。
(6) 面積相等的兩個三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個角是60的等腰三角形是等邊三角形。
初一數(shù)學(xué)知識點總結(jié)5
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的`數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).
初一數(shù)學(xué)知識點總結(jié)6
有理數(shù)
1.1 正數(shù)與負數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的`反而小。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標系的構(gòu)成
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標的性質(zhì)
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
②不準丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻(nèi)同類項合并。
初一數(shù)學(xué)知識點總結(jié)7
有理數(shù)及其運算板塊:
1、整數(shù)包含正整數(shù)和負整數(shù),分數(shù)包含正分數(shù)和負分數(shù)。正整數(shù)和正分數(shù)通稱為正數(shù),負整數(shù)和負分數(shù)通稱為負數(shù)。
2、正整數(shù)、0、負整數(shù)、正分數(shù)、負分數(shù)這樣的數(shù)稱為有理數(shù)。
3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。
整式板塊:
1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。
2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
3、整式:單項式與多項式統(tǒng)稱整式。
4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
一元一次方程:
1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的值都相等的未知數(shù)的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數(shù)學(xué)知識點總結(jié)還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)
數(shù)軸的三要素:
原點、正方向、單位長度(三者缺一不可)。
任何一個有理數(shù),都可以用數(shù)軸上的一個點來表示。(反過來,不能說數(shù)軸上所有的點都表示有理數(shù))
如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。(0的相反數(shù)是0)
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的側(cè),且到原點的距離相等。
數(shù)軸上兩點表示的數(shù),右邊的總比左邊的大。正數(shù)在原點的右邊,負數(shù)在原點的左邊。
絕對值的定義:
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。數(shù)a的絕對值記作|a|。
正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的數(shù);0的絕對值是0。
絕對值的性質(zhì):
除0外,絕對值為一正數(shù)的數(shù)有兩個,它們互為相反數(shù);
互為相反數(shù)的兩數(shù)(除0外)的絕對值相等;
任何數(shù)的絕對值總是非負數(shù),即|a|0
比較兩個負數(shù)的大小,絕對值大的反而小。比較兩個負數(shù)的大小的步驟如下:
、傧惹蟪鰞蓚數(shù)負數(shù)的絕對值;
②比較兩個絕對值的大;
、鄹鶕(jù)兩個負數(shù),絕對值大的反而小做出正確的判斷。
絕對值的性質(zhì):
、賹θ魏斡欣頂(shù)a,都有|a|0
、谌魘a|=0,則|a|=0,反之亦然
、廴魘a|=b,則a=b
、軐θ魏斡欣頂(shù)a,都有|a|=|—a|
有理數(shù)加法法則:
、偻杻蓴(shù)相加,取相同符號,并把絕對值相加。
、诋愄杻蓴(shù)相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數(shù)的符號,并用較大數(shù)的絕對值減去較小數(shù)的絕對值。
、垡粋數(shù)同0相加,仍得這個數(shù)。
加法的交換律、結(jié)合律在有理數(shù)運算中同樣適用。
靈活運用運算律,使用運算簡化,通常有下列規(guī)律:
、倩橄喾吹腵兩個數(shù),可以先相加;
、诜栂嗤臄(shù),可以先相加;
、鄯帜赶嗤臄(shù),可以先相加;
④幾個數(shù)相加能得到整數(shù),可以先相加。
有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
有理數(shù)減法運算時注意兩變:
、俑淖冞\算符號;
、诟淖儨p數(shù)的性質(zhì)符號(變?yōu)橄喾磾?shù))
有理數(shù)減法運算時注意一個不變:被減數(shù)與減數(shù)的位置不能變換,也就是說,減法沒有交換律。
有理數(shù)的加減法混合運算的步驟:
①寫成省略加號的代數(shù)和。在一個算式中,若有減法,應(yīng)由有理數(shù)的減法法則轉(zhuǎn)化為加法,然后再省略加號和括號;
、诶眉臃▌t,加法交換律、結(jié)合律簡化計算。
(注意:減去一個數(shù)等于加上這個數(shù)的相反數(shù),當有減法統(tǒng)一成加法時,減數(shù)應(yīng)變成它本身的相反數(shù)。)
有理數(shù)乘法法則:
①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖(shù)與0相乘,積仍為0。
如果兩個數(shù)互為倒數(shù),則它們的乘積為1。
乘法的交換律、結(jié)合律、分配律在有理數(shù)運算中同樣適用。
有理數(shù)乘法運算步驟:①先確定積的符號;
、谇蟪龈饕驍(shù)的絕對值的積。
乘積為1的兩個有理數(shù)互為倒數(shù)。注意:
、倭銢]有倒數(shù)
、谇蠓謹(shù)的倒數(shù),就是把分數(shù)的分子分母顛倒位置。一個帶分數(shù)要先化成假分數(shù)。
、壅龜(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。
有理數(shù)除法法則:
①兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。
②0除以任何非0的數(shù)都得0。0不可作為除數(shù),否則無意義。
有理數(shù)的乘方
注意:
①一個數(shù)可以看作是本身的一次方,如5=51;
②當?shù)讛?shù)是負數(shù)或分數(shù)時,要先用括號將底數(shù)括上,再在右上角寫指數(shù)。
乘方的運算性質(zhì):
、僬龜(shù)的任何次冪都是正數(shù);
、谪摂(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù);
、廴魏螖(shù)的偶數(shù)次冪都是非負數(shù);
④1的任何次冪都得1,0的任何次冪都得0;
、荨1的偶次冪得1;—1的奇次冪得—1;
⑥在運算過程中,首先要確定冪的符號,然后再計算冪的絕對值。
有理數(shù)混合運算法則:①先算乘方,再算乘除,最后算加減。
②如果有括號,先算括號里面的。
初一數(shù)學(xué)知識點總結(jié)8
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數(shù)化為1
二、不等式的基本性質(zhì):
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據(jù)不等式的基本性質(zhì):
性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變,
性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,
性質(zhì)3:不等式兩邊乘以(或除以)同一個負數(shù),不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
。2)考查不等式的性質(zhì)。
誤區(qū)提醒
忽略不等號變向問題。
初中數(shù)學(xué)重點知識點歸納
有理數(shù)乘法的`運算律
1、乘法的交換律:ab=ba;
2、乘法的結(jié)合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。
注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。
提高數(shù)學(xué)思維的方法
轉(zhuǎn)化思維
轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創(chuàng)新思維
創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解
要培養(yǎng)質(zhì)疑的習(xí)慣
在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。
在孩子放學(xué)回家后,讓孩子回顧當天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。
初一數(shù)學(xué)知識點總結(jié)9
1、單項式的定義:
由數(shù)或字母的積組成的式子叫做單項式。
說明:單獨的一個數(shù)或者單獨的一個字母也是單項式.
2、單項式的系數(shù):
單項式中的數(shù)字因數(shù)叫這個單項式的系數(shù).
說明:⑴單項式的系數(shù)可以是整數(shù),也可能是分數(shù)或小數(shù)。如3x的系數(shù)是3的32
系數(shù)是1;4.8a的系數(shù)是4.8; 3
、茊雾検降南禂(shù)有正有負,確定一個單項式的系數(shù),要注意包含在它前面的符號,
?4xy2的系數(shù)是4;2x2y的系數(shù)是4;
、菍τ谥缓凶帜敢驍(shù)的單項式,其系數(shù)是1或-1,不能認為是0,如?ab的
系數(shù)是-1;ab的系數(shù)是1;
、缺硎緢A周率的π,在數(shù)學(xué)中是一個固定的常數(shù),當它出現(xiàn)在單項式中時,應(yīng)將其作為系數(shù)的一部分,而不能當成字母。如2πxy的`系數(shù)就是2.
3、單項式的次數(shù):
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).
說明:⑴計算單項式的次數(shù)時,應(yīng)注意是所有字母的指數(shù)和,不要漏掉字母指數(shù)是1
的情況。如單項式2xyz的次數(shù)是字母z,y,x的指數(shù)和,即4+3+1=8,
而不是7次,應(yīng)注意字母z的指數(shù)是1而不是0;
、茊雾検降闹笖(shù)只和字母的指數(shù)有關(guān),與系數(shù)的指數(shù)無關(guān)。
、菃雾検绞且粋單獨字母時,它的指數(shù)是1,如單項式m的指數(shù)是1,單項式是單獨的一個常數(shù)時,一般不討論它的次數(shù);
4、在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作“* ”或者省略不寫。
5、在書寫單項式時,數(shù)字因數(shù)寫在字母因數(shù)的前面,數(shù)字因數(shù)是帶分數(shù)時轉(zhuǎn)化成假分數(shù).。
初一數(shù)學(xué)知識點總結(jié)10
第五章《相交線與平行線》
一、知識點
5.1相交線5.1.1相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
5.1.2兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
⑵具有垂直關(guān)系的兩條直線所成的4個角都是90。
、谴怪笔窍嘟坏奶厥馇闆r。
、却怪钡挠浄ǎ篴⊥b,AB⊥CD。
畫已知直線的垂線有無數(shù)條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
5.2平行線5.2.1平行線
在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。在同一平面內(nèi)兩條直線的關(guān)系只有兩種:相交或平行。
平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個角叫做內(nèi)錯角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的.同一旁,這樣的兩個角叫做同旁內(nèi)角。判定兩條直線平行的方法:
方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行。
方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行。
5.3平行線的性質(zhì)
平行線具有性質(zhì):
性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。
性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。判斷一件事情的語句叫做命題。5.4平移
⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
⑵新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點,連接各組對應(yīng)點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章《平面直角坐標系》
一、知識點
6.1平面直角坐標系
6.1.1有序數(shù)對
有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對。
6.1.2平面直角坐標系
平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數(shù)對來表示。
建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。
6.2坐標方法的簡單應(yīng)用
6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區(qū)域內(nèi)一些地點分布情況平面圖的過程如下:
、沤⒆鴺讼,選擇一個適當?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;
⑵根據(jù)具體問題確定適當?shù)谋壤,在坐標軸上標出單位長度;
、窃谧鴺似矫鎯(nèi)畫出這些點,寫出各點的坐標和各個地點的名稱。6.2.2用坐標表示平移
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應(yīng)點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應(yīng)點(x,y+b)(或(x,y-b))。
在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章《三角形》
一、知識點
7.1與三角形有關(guān)的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。
頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。三角形兩邊的和大于第三邊。7.1.2三角形的高、中線和角平分線7.1.3三角形的穩(wěn)定性
三角形具有穩(wěn)定性。7.2與三角形有關(guān)的角7.2.1三角形的內(nèi)角
三角形的內(nèi)角和等于180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。三角形的一個外角大于與它不相鄰的任何一個內(nèi)角。
7.3多邊形及其內(nèi)角和7.3.1多邊形
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。n邊形的對角線公式:
n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內(nèi)角和
n邊形的內(nèi)角和公式:180(n-2)多邊形的外角和等于360。
7.4課題學(xué)習(xí)鑲嵌
1三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形!2判斷三條線段能否組成三角形。
①a+b>c(ab為最短的兩條線段)②a-b
a-b 進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。 兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。 第九章《不等式與不等式組》 一、知識點 9.1不等式 9.1.1不等式及其解集 用“<”或“>”號表示大小關(guān)系的式子叫做不等式。使不等式成立的未知數(shù)的值叫做不等式的解。 能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集。含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。 9.1.2不等式的性質(zhì) 不等式有以下性質(zhì): 不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。9.2實際問題與一元一次不等式 解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為x<a(或x>a)的形式。 9.3一元一次不等式組 把兩個不等式合起來,就組成了一個一元一次不等式組。 幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。 對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。9.4課題學(xué)習(xí)利用不等關(guān)系分析比賽 一、知識梳理 :正、負數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。 。河欣頂(shù)的概念和分類:整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種: 注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)。 。簲(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。:絕對值的概念: (1)幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|; 。2)代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。 注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù)). 。合喾磾(shù)的概念: 。1)幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù); 。2)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。 。河欣頂(shù)大小的比較: 有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。 數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。 用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小。 。河欣頂(shù)加法法則: (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的.符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù).:有理數(shù)加法運算律: 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。 。河欣頂(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 。河欣頂(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。 (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ①整數(shù)②分數(shù) (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)0和正整數(shù);a0 a是正數(shù);a0 a是負數(shù); a≥0 a是正數(shù)或0 a是非負數(shù);a≤ 0 ? a是負數(shù)或0 a是非正數(shù). 有理數(shù)比大。 (1)正數(shù)的絕對值越大,這個數(shù)越大; (2)正數(shù)永遠比0大,負數(shù)永遠比0小; (3)正數(shù)大于一切負數(shù); (4)兩個負數(shù)比大小,絕對值大的反而小; (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù)0,小數(shù)-大數(shù)0. 初一數(shù)學(xué)下冊期末考試知識點總結(jié)一(蘇教版) 第七章 平面圖形的認識(二) 1 第八章 冪的運算 2 第九章 整式的乘法與因式分解 3 第十章 二元一次方程組 4 第十一章 一元一次不等式 4 第十二章 證明 9 第七章 平面圖形的認識(二) 一、知識點: 1、“三線八角” 、 如何由線找角:一看線,二看型。 同位角是“F”型; 內(nèi)錯角是“Z”型; 同旁內(nèi)角是“U”型。 、 如何由角找線:組成角的三條線中的公共直線就是截線。 2、平行公理: 如果兩條直線都和第三條直線平行,那么這兩條直線也平行。 簡述:平行于同一條直線的兩條直線平行。 補充定理: 如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。 簡述:垂直于同一條直線的兩條直線平行。 3、平行線的判定和性質(zhì): 判定定理 性質(zhì)定理 條件 結(jié)論 條件 結(jié)論 同位角相等 兩直線平行 兩直線平行 同位角相等 內(nèi)錯角相等 兩直線平行 兩直線平行 內(nèi)錯角相等 同旁內(nèi)角互補 兩直線平行 兩直線平行 同旁內(nèi)角互補 4、圖形平移的性質(zhì): 圖形經(jīng)過平移,連接各組對應(yīng)點所得的線段互相平行(或在同一直線上)并且相等。 5、三角形三邊之間的關(guān)系: 三角形的任意兩邊之和大于第三邊; 三角形的任意兩邊之差小于第三邊。 若三角形的.三邊分別為a、b、c, 則 6、三角形中的主要線段: 三角形的高、角平分線、中線。 注意:①三角形的高、角平分線、中線都是線段。 、诟摺⒔瞧椒志、中線的應(yīng)用。 7、三角形的內(nèi)角和: 三角形的3個內(nèi)角的和等于180°; 直角三角形的兩個銳角互余; 三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和; 三角形的一個外角大于與它不相鄰的任意一個內(nèi)角。 8、多邊形的內(nèi)角和: n邊形的內(nèi)角和等于(n-2)180°; 任意多邊形的外角和等于360°。 第八章 冪的運算 冪(p5 1.同一平面內(nèi),兩直線不平行就相交。 2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互 為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。 3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其 中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。4.垂直三要素:垂直關(guān)系,垂直記號,垂足 5.垂直公理:過一點有且只有一條直線與已知直線垂直。6.垂線段最短; 7.點到直線的距離:直線外一點到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯角Z(在 兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點有且只有一條直線與已知直線平行。 10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題 11.平行線的判定。結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì): 1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯角相等。3.兩直線平行,同旁內(nèi)角互補。 12.★命題:“如果+題設(shè),那么+結(jié)論! 三角形和多邊形 1.三角形內(nèi)角和為180° 2.構(gòu)成三角形滿足的條件:三角形兩邊之和大于第三邊。 判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構(gòu)成三角形,否則(a+bc)不能構(gòu)成三角形(即三角形最短的兩邊之和大于最長的邊) 3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應(yīng)有三條底邊,任取其中一組底和高,21三角形同一個面積公式就有三個表示方法,任取其中兩個寫成連等(可兩邊同時2消去)底高 2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD 是斜邊AB 上的高,則有ACBCCDAB A CB1D【重點題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的`高為5.等高法:高相等,底之間具有一定關(guān)系(如成比例或相等) 【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點題目】P695題7.外角: 【基礎(chǔ)知識】什么是外角?外角定理及其推論【重點題目】P75例2P765、6、8題8.n邊形的★內(nèi)角和★外角和√對角線條數(shù)為 【基礎(chǔ)知識】正多邊形:各邊相等,各角相等;正n邊形每個內(nèi)角的度數(shù)為【重點題目】P83、P84練習(xí)1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個拼接點,各圖形組成一個周角(不重疊,無空隙)。 單一正多邊形的鑲嵌:鑲嵌圖形的每個內(nèi)角能被360整除:只有6個等邊三角形(60),4個正方形(90),3個正六邊形(120)三種 。▋煞N正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個內(nèi)角度數(shù)為的正多邊形與 0000m個內(nèi)角度數(shù)為的正多邊形圍繞一個拼接點組成一個周角,即混合鑲嵌。 【例】用正三角形與正方形鋪滿地面,設(shè)在一個頂點周圍有m個正三角形、n個正方形,則m,n的值分別為多少? 平面直角坐標系 ▲基本要求:在平面直角坐標系中1.給出一點,能夠?qū)懗鲈擖c坐標2.給出坐標,能夠找到該點 ▲建系原則:原點、正方向、橫縱軸名稱(即x、y) √語言描述:以…(哪一點)為原點,以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標系 ▲基本概念:有順序的兩個數(shù)組成的數(shù)對稱為(有序數(shù)對)【三大規(guī)律】1.平移規(guī)律★ 點的平移規(guī)律(P51歸納) 例將P(2,3)向左平移3個單位,向上平移5個單位得到點Q,則Q點的坐標為圖形的平移規(guī)律(P52歸納) 重點題目:P53練習(xí);P543、4題;P557題。2.對稱規(guī)律▲ 關(guān)于x軸對稱,縱坐標取相反數(shù)關(guān)于y軸對稱,橫坐標取相反數(shù) 關(guān)于原點對稱,橫、縱坐標同時取相反數(shù) 例:P點的坐標為(5,7),則P點 。1.)關(guān)于x軸對稱的點為(2.)關(guān)于y軸的對稱點為(3.)關(guān)于原點的對稱點為3.位置規(guī)律★ 假設(shè)在平面直角坐標系上有一點P(a,b)y1.如果P點在第一象限,有a>0,b>0(橫、縱坐標都大于0)第二象限第一象限2.如果P點在第二象限,有a0(橫坐標小于0,縱坐標大于0)X3.如果P點在第三象限,有a5.小長方形的面積表示頻數(shù)?v軸為頻數(shù)。等距分組時,通常直接用小長方形的高表示頻數(shù),即縱 組距軸為“頻數(shù)” 6.頻數(shù)分布折線圖√根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:①取每個小長方形的上邊的中點,以及x 軸上與最左、最右直方相距半個組距的點。②連線【重點題目】P1693、4題 二元一次方程組和不等式、不等式組 1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分) 3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實際問題。關(guān)鍵:找等量關(guān)系常見的類型有:分配問題P1185題;P1084、5題;P102練習(xí)3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習(xí)2;P1082題;藥物配制P1087題;行程問題P99練習(xí)4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(zhì)(重點是性質(zhì)三)P1285、7題6.利用不等式的性質(zhì)解不等式,并把解集在數(shù)軸上表示出來(課本上的練例、習(xí)題)P1342 步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習(xí)2;P123練習(xí)28.利用數(shù)軸或口訣解不等式組(課本上的例、習(xí)題) 數(shù)軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小小(于)大取中間,大(于)大。ㄓ冢┬,解不見了。 9.列不等式(組)解決實際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習(xí)2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補充完整:不等式組 4 在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取。粁>ax<b空集大大小小不見了。 知識點、概念總結(jié) 1.不等式:用符號"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。 2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。 一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。 3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。 4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3 (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。 6.解不等式可遵循的一些同解原理 (1)不等式F(x) (2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性質(zhì): (1)如果x>y,那么yy;(對稱性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的'不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運用不等式性質(zhì)2、3) (2)去括號 (3)移項(運用不等式性質(zhì)1) (4)合并同類項 (5)將未知數(shù)的系數(shù)化為1(運用不等式性質(zhì)2、3) (6)有些時候需要在數(shù)軸上表示不等式的解集 10.一元一次不等式與一次函數(shù)的綜合運用: 一般先求出函數(shù)表達式,再化簡不等式求解。 11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成 了一個一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個不等式的解集; (2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸) (3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結(jié)論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無公共部分分開無解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無解 15.應(yīng)用不等式組解決實際問題的步驟 (1)審清題意 (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組 (3)解不等式組 (4)由不等式組的解確立實際問題的解 (5)作答 16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結(jié)合生活實際具體分析,最后確定結(jié)果。 一、目標與要求 1、通過處理實際問題,讓學(xué)生體驗從算術(shù)方法到代數(shù)方法是一種進步; 2、初步學(xué)會如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念; 3、培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。 二、重點 從實際問題中尋找相等關(guān)系; 建立列方程解決實際問題的思想方法,學(xué)會合并同類項,會解ax+bx=c類型的一元一次方程。 三、難點 從實際問題中尋找相等關(guān)系; 分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學(xué)生逐步建立列方程解決實際問題的思想方法。 四、知識框架 五、知識點、概念總結(jié) 1、一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。 2、一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)。 3、條件:一元一次方程必須同時滿足4個條件: 。1)它是等式; 。2)分母中不含有未知數(shù); 。3)未知數(shù)最高次項為1; 。4)含未知數(shù)的項的'系數(shù)不為0。 4、等式的性質(zhì): 等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。 等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。 等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。 解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。 5、合并同類項 。1)依據(jù):乘法分配律 。2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項 。3)合并時次數(shù)不變,只是系數(shù)相加減。 6、移項 。1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。 (2)依據(jù):等式的性質(zhì) 。3)把方程一邊某項移到另一邊時,一定要變號。 7、一元一次方程解法的一般步驟: 使方程左右兩邊相等的未知數(shù)的值叫做方程的解。 一般解法: 。1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù); 。2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號) 。3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號 。4)合并同類項:把方程化成ax=b(a0)的形式; (5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a。 8、同解方程 如果兩個方程的解相同,那么這兩個方程叫做同解方程。 9、方程的同解原理: 。1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。 。2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。 10、列一元一次方程解應(yīng)用題: (1)讀題分析法:多用于和,差,倍,分問題 仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套—————,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。 。2)畫圖分析法:多用于行程問題 利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。 11、列方程解應(yīng)用題的常用公式: 12、做一元一次方程應(yīng)用題的重要方法: 。1)認真審題(審題) 。2)分析已知和未知量 。3)找一個合適的等量關(guān)系 (4)設(shè)一個恰當?shù)奈粗獢?shù) 。5)列出合理的方程(列式) 。6)解出方程(解題) 。7)檢驗 (8)寫出答案(作答) 一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。 【初一數(shù)學(xué)知識點總結(jié)】相關(guān)文章: 初一數(shù)學(xué)下冊知識點總結(jié)11-29 初一數(shù)學(xué)下知識點總結(jié)12-07 初一數(shù)學(xué)棱錐知識點總結(jié)11-29 初一數(shù)學(xué)知識點的總結(jié)11-07 人教版初一數(shù)學(xué)知識點總結(jié)04-24初一數(shù)學(xué)知識點總結(jié)11
初一數(shù)學(xué)知識點總結(jié)12
初一數(shù)學(xué)知識點總結(jié)13
初一數(shù)學(xué)知識點總結(jié)14
初一數(shù)學(xué)知識點總結(jié)15