亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

高考備考

高考數(shù)學知識點總結(jié)歸納

時間:2022-06-12 17:18:10 高考備考 我要投稿

高考數(shù)學知識點總結(jié)歸納

  在年少學習的日子里,說起知識點,應該沒有人不熟悉吧?知識點就是掌握某個問題/知識的學習要點。為了幫助大家掌握重要知識點,下面是小編整理的高考數(shù)學知識點歸納總結(jié),希望對大家有所幫助。

高考數(shù)學知識點總結(jié)歸納

  高考數(shù)學知識點總結(jié)歸納1

  復數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識綜合。本章主要內(nèi)容是復數(shù)的概念,復數(shù)的代數(shù)、幾何、三角表示方法以及復數(shù)的運算.方程、方程組,數(shù)形結(jié)合,分域討論,等價轉(zhuǎn)化的數(shù)學思想與方法在本章中有突出的體現(xiàn).而復數(shù)是代數(shù),三角,解析幾何知識,相互轉(zhuǎn)化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數(shù)、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強。

  在本章學習結(jié)束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數(shù)形式的方程、復數(shù)集中的數(shù)列等邊緣性的知識還有待于進一步的研究。

  復數(shù)中的難點

  (1)復數(shù)的向量表示法的運算.對于復數(shù)的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難。對此應認真體會復數(shù)向量運算的幾何意義,對其靈活地加以證明。

  (2)復數(shù)三角形式的乘方和開方。有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練。

  (3)復數(shù)的輻角主值的求法。

  (4)利用復數(shù)的幾何意義靈活地解決問題.復數(shù)可以用向量表示,同時復數(shù)的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會。

  高考數(shù)學知識點總結(jié)歸納2

  第一:高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二:平面向量和三角函數(shù)。

  重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四:空間向量和立體幾何。

  在里面重點考察兩個方面:一個是證明;一個是計算。

  第五:概率和統(tǒng)計。

  這一板塊主要是屬于數(shù)學應用問題的范疇,當然應該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內(nèi)容?忌鷳撜莆账耐ǚǎ诙愇覀兯v的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

  高考數(shù)學知識點總結(jié)歸納3

  1.滿足二元一次不等式(組)的x和y的取值構成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構成的集合稱為二元一次不等式(組)的解集。

  2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。

  3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。

  4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。

  5.一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義!熬定界,點定域”。

  6.滿足二元一次不等式(組)的整數(shù)x和y的取值構成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。

  7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。

  8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。

  9.從實際問題中抽象出二元一次不等式(組)的步驟是:

  (1)根據(jù)題意,設出變量;

  (2)分析問題中的變量,并根據(jù)各個不等關系列出常量與變量x,y之間的不等式;

  (3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。

  高考數(shù)學知識點總結(jié)歸納4

  1.等差數(shù)列的定義

  如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  2.等差數(shù)列的通項公式

  若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d。

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項。

  4.等差數(shù)列的常用性質(zhì)

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N.)。

  (2)若{an}為等差數(shù)列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N.)。

  (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N.)是公差為md的等差數(shù)列。

  (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列。

  (5)S2n-1=(2n-1)an。

  (6)若n為偶數(shù),則S偶-S奇=nd/2;

  若n為奇數(shù),則S奇-S偶=a中(中間項)。

  注意:

  一個推導

  利用倒序相加法推導等差數(shù)列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個技巧

  已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設元。

  (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設元。

  四種方法

  等差數(shù)列的判斷方法

  (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N.)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列。

  高考數(shù)學知識點總結(jié)歸納5

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。

  性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  高考數(shù)學知識點總結(jié)歸納6

  判斷函數(shù)值域的方法

  1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

  3、判別式法:若函數(shù)為分式結(jié)構,且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的范圍,即原函數(shù)的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時,要時刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個函數(shù)定義域與值域互換的特點,確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

  6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開右閉區(qū)間和(√p,+∞)的左閉右開區(qū)間,減區(qū)間為(-√p,0)和(0,√p)

  7、數(shù)形結(jié)合法:分析函數(shù)解析式表達的集合意義,根據(jù)其圖像特點確定值域。

  高考數(shù)學知識點歸納:對數(shù)函數(shù)性質(zhì)

  定義域求解:對數(shù)函數(shù)y=logax的定義域是{x丨x>0},但如果遇到對數(shù)型復合函數(shù)的定義域的求解,除了要注意大于0以外,還應注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域為{x丨x>1/2且x≠1}

  值域:實數(shù)集R,顯然對數(shù)函數(shù)無界。

  定點:函數(shù)圖像恒過定點(1,0)。

  單調(diào)性:a>1時,在定義域上為單調(diào)增函數(shù);

  奇偶性:非奇非偶函數(shù)

  周期性:不是周期函數(shù)

  對稱性:無

  最值:無

  零點:x=1

  注意:負數(shù)和0沒有對數(shù)。

  兩句經(jīng)典話:底真同對數(shù)正,底真異對數(shù)負。解釋如下:

  也就是說:若y=logab (其中a>0,a≠1,b>0)

  當a>1,b>1時,y=logab>0;

  當01時,y=logab<0;

  當a>1,0

  高考數(shù)學必考知識點:方差的性質(zhì)

  1.設C為常數(shù),則D(C) = 0(常數(shù)無波動);

  2. D(CX )=C2 D(X ) (常數(shù)平方提取);

  證:

  特別地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差無負值)

  3.若X 、Y相互獨立,則

  證:

  記則前面兩項恰為D(X )和D(Y ),第三項展開后為

  當X、Y相互獨立時,故第三項為零。

  特別地獨立前提的逐項求和,可推廣到有限項。

  高考數(shù)學知識點總結(jié)歸納7

  一、間斷點求極限

  1、連續(xù)、間斷點以及間斷點的分類:判斷間斷點類型的基礎是求函數(shù)在間斷點處的左右極限;

  2、可導和可微,分段函數(shù)在分段點處的導數(shù)或可導性,一律通過導數(shù)定義直接計算或檢驗存在的定義是極限 存在;

  3、漸近線,(垂直、水平或斜漸近線);

  4、多元函數(shù)積分學,二重極限的討論計算難度較大,?疾樽C明極限不存在。

  二、下面我們重點講一下數(shù)列極限的典型方法。

  (一)重要題型及點撥

  1、求數(shù)列極限

  求數(shù)列極限可以歸納為以下三種形式。

  2、抽象數(shù)列求極限

  這類題一般以選擇題的形式出現(xiàn), 因此可以通過舉反例來排除。 此外,也可以按照定義、基本性質(zhì)及運算法則直接驗證。

  (二)求具體數(shù)列的極限,可以參考以下幾種方法:

  a、利用單調(diào)有界必收斂準則求數(shù)列極限。

  首先,用數(shù)學歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進而確定極限存在性;其次,通過遞推關系中取極限,解方程, 從而得到數(shù)列的極限值。

  b、利用函數(shù)極限求數(shù)列極限

  如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關系轉(zhuǎn)化為求函數(shù)極限,此時再用洛必達法則求解。

 。ㄈ┣箜椇突蝽椃e數(shù)列的極限,主要有以下幾種方法:

  a、利用特殊級數(shù)求和法

  如果所求的項和式極限中通項可以通過錯位相消或可以轉(zhuǎn)化為極限已知的一些形式,那么通過整理可以直接得出極限結(jié)果。

  b、利用冪級數(shù)求和法

  若可以找到這個級數(shù)所對應的冪級數(shù),則可以利用冪級數(shù)函數(shù)的方法把它所對應的和函數(shù)求出,再根據(jù)這個極限的形式代入相應的變量求出函數(shù)值。

  c、利用定積分定義求極限

  若數(shù)列每一項都可以提出一個因子,剩余的項可用一個通項表示, 則可以考慮用定積分定義求解數(shù)列極限。

  d、利用夾逼定理求極限

  若數(shù)列每一項都可以提出一個因子,剩余的項不能用一個通項表示,但是其余項是按遞增或遞減排列的,則可以考慮用夾逼定理求解。

  e、求項數(shù)列的積的極限

  一般先取對數(shù)化為項和的形式,然后利用求解項和數(shù)列極限的方法進行計算。

  高考數(shù)學知識點總結(jié)歸納8

  一、簡單的邏輯聯(lián)結(jié)詞

  1.用聯(lián)結(jié)詞且聯(lián)結(jié)命題p和命題q,記作pq,讀作p且q.

  2.用聯(lián)結(jié)詞或聯(lián)結(jié)命題p和命題q,記作pq,讀作p或q.

  3.對一個命題p全盤否定,就得到一個新命題,記作綈p,讀作非p或p的否定.

  4.命題pq,pq,綈p的真假判斷:

  pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.

  二、全稱量詞與存在量詞

  1.全稱量詞與全稱命題

  (1)短語所有的任意一個在邏輯中通常叫做全稱量詞,并用符號表示.

  (2)含有全稱量詞的命題,叫做全稱命題.

  (3)全稱命題對M中任意一個x,有p(x)成立可用符號簡記為xM,p(x),讀作對任意x屬于M,有p(x)成立.

  2.存在量詞與特稱命題

  (1)短語存在一個至少有一個在邏輯中通常叫做存在量詞,并用符號表示.

  (2)含有存在量詞的命題,叫做特稱命題.

  (3)特稱命題存在M中的一個x0,使p(x0)成立可用符號簡記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.

  三、含有一個量詞的命題的否定

命題命題的否定
xM,p(x)x0M,綈p(x0)
x0M,p(x0)xM,綈p(x)

  四、解題思路

  1.邏輯聯(lián)結(jié)詞與集合的關系

  或、且、非三個邏輯聯(lián)結(jié)詞,對應著集合運算中的并、交、補,因此,常常借助集合的并、交、補的意義來解答由或、且、非三個聯(lián)結(jié)詞構成的命題問題.

  2.正確區(qū)別命題的否定與否命題

  否命題是對原命題若p,則q的條件和結(jié)論分別加以否定而得到的命題,它既否定其條件,又否定其結(jié)論;命題的否定即非p,只是否定命題p的結(jié)論. 命題的否定與原命題的真假總是對立的,即兩者中有且只有一個為真,而原命題與否命題的真假無必然聯(lián)系.

  3.全稱命題真假的判斷方法

  (1)要判斷一個全稱命題是真命題,必須對限定的集合M中的每一個元素x,證明p(x)成立;

  (2)要判斷一個全稱命題是假命題,只要能舉出集合M中的一個特殊值x=x0,使p(x0)不成立即可.

  4.特稱命題真假的判斷方法

  要判斷一個特稱命題是真命題,只要在限定的集合M中,找到一個x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.

  高考數(shù)學知識點總結(jié)歸納9

  動點的軌跡方程動點的軌跡方程:

  在直角坐標系中,動點所經(jīng)過的軌跡用一個二元方程f(x,y)=0表示出來。

  求動點的軌跡方程的基本方法:

  直接法、定義法、相關點法、參數(shù)法、交軌法等。

  1、直接法:

  如果動點運動的條件就是一些幾何量的等量關系,這些條件簡單明確,不需要特殊的技巧,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法;

  用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。

  2、定義法:

  利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,高考生物,這種方法叫做定義法.這種方法要求題設中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件。定義法的關鍵是條件的轉(zhuǎn)化??轉(zhuǎn)化成某一基本軌跡的定義條件;

  3、相關點法:

  動點所滿足的條件不易表述或求出,但形成軌跡的動點P(x,y)卻隨另一動點Q(x′,y′)的運動而有規(guī)律的運動,且動點Q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關點法。一般地:定比分點問題,對稱問題或能轉(zhuǎn)化為這兩類的軌跡問題,都可用相關點法。

  4、參數(shù)法:

  求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再從所求式子中消去參數(shù),得出動點的軌跡方程。用什么變量為參數(shù),要看動點隨什么量的變化而變化,常見的參數(shù)有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據(jù)方程的觀點,引入n個參數(shù),需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數(shù)可減少)。

  5、交軌法:

  求兩動曲線交點軌跡時,可由方程直接消去參數(shù),例如求兩動直線的交點時常用此法,也可以引入?yún)?shù)來建立這些動曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程。可以說是參數(shù)法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數(shù),得到交點的兩個坐標間的關系即可。交軌法實際上是參數(shù)法中的一種特殊情況。

  求軌跡方程的步驟:

  (l)建系,設點建立適當?shù)淖鴺讼,設曲線上任意一點的坐標為M(x,y);

  (2)寫集合寫出符合條件P的點M的集合P(M);

  (3)列式用坐標表示P(M),列出方程f(x,y)=0;

  (4)化簡化方程f(x,y)=0為最簡形式;

  (5)證明證明以化簡后的方程的解為坐標的點都是曲線上的點,

  高考數(shù)學知識點總結(jié)歸納10

  一、求動點的軌跡方程的基本步驟

 、苯⑦m當?shù)淖鴺讼担O出動點M的坐標;

  ⒉寫出點M的集合;

 、沉谐龇匠=0;

 、椿喎匠虨樽詈喰问剑

 、禉z驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  ⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

 、磪(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

 、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  直譯法:求動點軌跡方程的一般步驟

 、俳ㄏ到⑦m當?shù)淖鴺讼担?/p>

  ②設點設軌跡上的任一點P(x,y);

 、哿惺搅谐鰟狱cp所滿足的關系式;

 、艽鷵Q依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關于X,Y的方程式,并化簡;

 、葑C明證明所求方程即為符合條件的動點軌跡方程。

  高考數(shù)學知識點總結(jié)歸納11

  一、高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。

  二、平面向量和三角函數(shù)

  對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

  三、數(shù)列

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  四、空間向量和立體幾何

  在里面重點考察兩個方面:一個是證明;一個是計算。

  五、概率和統(tǒng)計

  概率和統(tǒng)計主要屬于數(shù)學應用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。

  六、解析幾何

  這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

  七、壓軸題

  同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數(shù)學直線方程知識點:什么是直線方程

  從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

  高考數(shù)學知識點總結(jié)歸納12

  一、排列組合篇

  1. 掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應用問題。

  2. 理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應用問題。

  3. 理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應用問題。

  4. 掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。

  5. 了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。

  6. 了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

  7. 了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

  8. 會計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率.

  二、立體幾何篇

  高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 共計總分27分左右,考查的知識點在20個以內(nèi)。 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當然, 二者均應以正確的空間想象為前提。 隨著新的課程改革的進一步實施,立體幾何考題正朝著“多一點思考,少一點計算”的發(fā)展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關系的論證,角與距離的探求是常考常新的熱門話題。

  知識整合

  1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點;

  (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒有公共點”。

  (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。

  (3)兩個平面平行的性質(zhì)定理:”如果兩個平行平面同時和第三個平面相交,那

  么它們的交線平行“。

  (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。

  (5)夾在兩個平行平面間的平行線段相等。

  (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。

  解答題分步驟解答可多得分

  1. 合理安排,保持清醒。數(shù)學考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時到考場。

  2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。

  3 .解答題規(guī)范有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關鍵步驟不能丟,如三種語言(文字語言、符號語言、圖形語言)的表達要規(guī)范,邏輯推理要嚴謹,計算過程要完整,注意算理算法,應用題建模與還原過程要清晰,合理安排卷面結(jié)構……對于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因為高考(微博)閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分數(shù)。有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。

  三、數(shù)列問題篇

  數(shù)列是高中數(shù)學的重要內(nèi)容,又是學習高等數(shù)學的基礎。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學歸納法綜合在一起。探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學方法。

  近幾年來,高考關于數(shù)列方面的命題主要有以下三個方面;

  (1)數(shù)列本身的有關知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。

  (2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

  (3)數(shù)列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

  知識整合

  1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項公式、前n項和公式的基礎上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學思想方法在解題實踐中的指導作用,靈活地運用數(shù)列知識和方法解決數(shù)學和實際生活中的有關問題;

  2. 在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數(shù)學思想方法的認識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡,提高分析問題和解決問題的能力,進一步培養(yǎng)學生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學思想方法分析問題與解決問題的能力。

  3. 培養(yǎng)學生善于分析題意,富于聯(lián)想,以適應新的背景,新的設問方式,提高學生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學生主動探索的精神和科學理性的思維方法.

  四、導數(shù)應用篇

  專題綜述

  導數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導數(shù)的學習,主要是以下幾個方面:

  1. 導數(shù)的常規(guī)問題:

  (1)刻畫函數(shù)(比初等方法精確細微);

  (2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);

  (3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于 次多項式的導數(shù)問題屬于較難類型。

  2. 關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。

  3. 導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應引起注意。

  知識整合

  1. 導數(shù)概念的理解。

  2. 利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的最大值與最小值。復合函數(shù)的求導法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復合函數(shù)的求導法則,接下來對法則進行了證明。

  3. 要能正確求導,必須做到以下兩點:

  (1)熟練掌握各基本初等函數(shù)的求導公式以及和、差、積、商的求導法則,復合函數(shù)的求導法則。

  (2)對于一個復合函數(shù),一定要理清中間的復合關系,弄清各分解函數(shù)中應對哪個變量求導。

  五、解析幾何(圓錐曲線)

  高考解析幾何剖析:

  1、很多高考問題都是以平面上的點、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎構成的圖形的問題;

  2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。

  有了以上兩點認識,我們可以毫不猶豫地下這么一個結(jié)論,那就是解決高考解析幾何問題無外乎做兩項工作:

  1、幾何問題代數(shù)化。

  2、用代數(shù)規(guī)則對代數(shù)化后的問題進行處理。

  高考數(shù)學知識點總結(jié)歸納13

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

  (2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

  3.數(shù)列的通項公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

  這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

  高考數(shù)學知識點總結(jié)歸納14

  1、三類角的求法:

  ①找出或作出有關的角。

 、谧C明其符合定義,并指出所求作的角。

  ③計算大小(解直角三角形,或用余弦定理)。

  2、正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正棱錐的計算集中在四個直角三角形中:

  3、怎樣判斷直線l與圓C的位置關系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  4、對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

  不看后悔!清華名師揭秘學好高中數(shù)學的方法

  培養(yǎng)興趣是關鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

  (1)欣賞數(shù)學的美感

  比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

  通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

  (2)注意到數(shù)學在實際生活中的應用。

  例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.

  學好數(shù)學,是現(xiàn)代公民的`基本素養(yǎng)之一啊.

  (3)采用靈活的教學手段,與時俱進。

  利用多種技術手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

  (4)適當看一些科普類的書籍和文章。

  比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質(zhì)的應用,這方面的文章也不少。

  高考數(shù)學知識點總結(jié)歸納15

  1、直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  2、直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 、谶^兩點的直線的斜率公式:

  注意下面四點:

  (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關;

  (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

  3、直線方程

  點斜式:

  直線斜率k,且過點

  注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

  高考數(shù)學知識點總結(jié)歸納16

  1.數(shù)列的定義、分類與通項公式

  (1)數(shù)列的定義:

 、贁(shù)列:按照一定順序排列的一列數(shù).

 、跀(shù)列的項:數(shù)列中的每一個數(shù).

  (2)數(shù)列的分類:

  分類標準類型滿足條件

  項數(shù)有窮數(shù)列項數(shù)有限

  無窮數(shù)列項數(shù)無限

  項與項間的大小關系遞增數(shù)列an+1>an其中n∈N.

  遞減數(shù)列an+1<an< p="">

  常數(shù)列an+1=an

  (3)數(shù)列的通項公式:

  如果數(shù)列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.

  2.數(shù)列的遞推公式

  如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.

  3.對數(shù)列概念的理解

  (1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構成它的“數(shù)”有關,而且還與這些“數(shù)”的排列順序有關,這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.

  (2)數(shù)列中的數(shù)可以重復出現(xiàn),而集合中的元素不能重復出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

  高考數(shù)學知識點總結(jié)歸納17

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯(lián)結(jié)詞、“充要關系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。

  考點二:函數(shù)與導數(shù)

  函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質(zhì)。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

  考點三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型.

  考點四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  高考數(shù)學知識點總結(jié)歸納18

  數(shù)學會考知識點

  第一,函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

  第三,數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

  第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。

  第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。

  高考對數(shù)學基礎知識的考查,既全面又突出重點,扎實的數(shù)學基礎是成功解題的關鍵。針對數(shù)學高考強調(diào)對基礎知識與基本技能的考查我們一定要全面、系統(tǒng)地復習高中數(shù)學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應萬變。

  對數(shù)學思想和方法的考查是對數(shù)學知識在更高層次上的抽象和概括的考查,考查時與數(shù)學知識相結(jié)合。

  對數(shù)學能力的考查,強調(diào)“以能力立意”,就是以數(shù)學知識為載體,從問題入手,把握學科的整體意義,用統(tǒng)一的數(shù)學觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應用,尤其是綜合和靈活的應用,所有數(shù)學考試最終落在解題上。考綱對數(shù)學思維能力、運算能力、空間想象能力以及實踐能力和創(chuàng)新意識都提出了十分明確的考查要求,而解題訓練是提高能力的必要途徑,所以高考復習必須把解題訓練落到實處。訓練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎知識,多進行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的認識,真正做到解一題,會一類。

  在臨近高考的數(shù)學復習中,考生們更應該從三個層面上整體把握,同步推進。

  1.知識層面

  也就是對每個章節(jié)、每個知識點的再認識、再記憶、再應用。數(shù)學高考內(nèi)容選修加必修,可歸納為12個章節(jié),75個知識點細化為160個小知識點,而這些知識點又是縱橫交錯,互相關聯(lián),是“你中有我,我中有你”的。考生們在清理這些知識點時,首先是點點必記,不可遺漏。再是建立相關聯(lián)的網(wǎng)絡,做到取自一點,連成一線,使之橫豎縱橫都逐個、逐級并網(wǎng)連遍,從而牢固記憶、靈活運用。

  2.能力層面

  從知識點的掌握到解題能力的形成,是綜合,更是飛躍,將知識點的內(nèi)容轉(zhuǎn)化為高強的數(shù)學能力,這要通過大量練習,通過大腦思維、再思維,從而沉淀而得到數(shù)學思想的精華,就是數(shù)學解題能力。我們通常說的解題能力、計算能力、轉(zhuǎn)化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。

  3.創(chuàng)新層面

  數(shù)學解題要創(chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學的主線,我們可以用函數(shù)的思想去分析一切數(shù)學問題,從初等數(shù)學到高等數(shù)學、從圖形問題到運算問題、從高散型到連續(xù)型、從指數(shù)與對數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來提高題目的難度,用于區(qū)別學生之間解題能力的差異。我們常常應對參數(shù)的策略點是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問題化成函數(shù)問題,使問題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。

  4.代換層面

  還有一類數(shù)學解題中的創(chuàng)新,是代換,構造新函數(shù)新圖形等等,俗稱代換法、構造法,這里有更大的思維跨越,在解題的某一階段有時出現(xiàn)山窮水盡,無計可施時,用代換與構造,就會使思路豁然開朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學之美。常見的代換有變量代換,三角代換,整體代換;常用的構造有構造函數(shù)、構造圖形、構造數(shù)列、構造不等式、構造相關模型等等。

  數(shù)學學習方法

  1.“方程”思想

  數(shù)學是研究事物的空間形式和數(shù)量關系。初中階段最重要的數(shù)量關系是平等關系,其次是不平等關系。最常見的等價關系是“方程”。例如,在等速運動中,距離、速度和時間之間存在等價關系,可以建立相關方程:速度時間=距離。在這樣的方程中,通常會有已知的量和未知量。含有這種未知量的方程是“方程”,它可以從方程中已知的量導出。未知量的過程是求解方程的過程。我們在小學時接觸過簡單的方程,而在初中第一年,我們系統(tǒng)地學習解一變量的第一個方程,并總結(jié)出解一變量的第一個方程的五個步驟。如果我們學習并掌握這五個步驟,任何一個等式都能順利地解決。在2年級和3年級,我們還將學習解決二次方程、二次方程和簡單三角方程。在高中,我們還學習指數(shù)方程、對數(shù)方程、線性方程、參數(shù)方程、極坐標方程等。求解這些方程的思想幾乎是相同的。通過一些方法,將它們轉(zhuǎn)化為一元一階方程或一元二次方程的形式,然后通過求解一元一階方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化學中的化學平衡方程以及大量實際應用都需要建立方程和求解方程才能得到結(jié)果。因此,學生必須學會如何解一維一階方程和一維二階方程,然后才能學好其他形式的方程。

  所謂的“方程”思想是數(shù)學問題,特別是未知現(xiàn)實見面和已知數(shù)量的復雜關系,善于利用“方程”的觀點建立相關方程,然后利用求解方程的方法來解決這個問題。

  2.“數(shù)與形相結(jié)合”的思想

  數(shù)字和形狀在世界各地隨處可見。任何東西,除去它的定性方面,都是留給數(shù)學研究的,只有形狀和尺寸的屬性。代數(shù)和幾何是初中數(shù)學的兩個分支。然而,代數(shù)的研究依賴于“形式”,而幾何學則依賴于“數(shù)”,而“數(shù)與形的結(jié)合”則是一種趨勢。我們學得越多,“數(shù)字”和“形狀”就越不可分割,在高中時,“數(shù)字”和“形狀”是密不可分的。有一門關于用代數(shù)方法研究幾何問題的課程,叫做“分析幾何”。第三年,平面笛卡爾坐標系建立后,函數(shù)的研究就離不開圖像。通過圖像的幫助,很容易找到問題的關鍵點,解決問題。在今后的數(shù)學學習中,應重視“數(shù)與形相結(jié)合”的思維訓練。只要任何問題都與“形狀”有關,就應該根據(jù)主題的含義起草一個草圖來分析它。這樣做不僅是直觀的,而且是全面的。誠信強,容易找到切入點,對解決問題有很大的益處。品嘗甜味的人會逐漸養(yǎng)成“數(shù)形結(jié)合”的好習慣。

  數(shù)學學習技巧

  1.按部就班

  數(shù)學是環(huán)環(huán)相扣的一門學科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。

  2.強調(diào)理解

  概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。

  3.基本訓練

  學習數(shù)學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓練要做到有的放矢。

  4.重視錯誤

  訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。

  數(shù)學的學習有一個循序漸進的過程,妄想一步登天是不現(xiàn)實的。熟記書本內(nèi)容后將書后習題認真寫好,有些同學可能認為書后習題太簡單不值得做,這種想法是極不可取的,書后習題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。

  高考數(shù)學知識點總結(jié)歸納19

  1、課程內(nèi)容:

  必修課程由5個模塊組成:

  必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上是每一個高中學生所必須學習的。

  上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應用,而不在技巧與難度上做過高的要求。

  此外,基礎內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。

  2、重難點及考點:

  重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導數(shù)

  難點:函數(shù)、圓錐曲線

  高考相關考點:

 、偶吓c簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

 、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應用

 、菙(shù)列:數(shù)列的有關概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應用

 、热呛瘮(shù):有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應用

 、善矫嫦蛄浚河嘘P概念與初等運算、坐標運算、數(shù)量積及其應用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

 、酥本和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系

 、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

 、椭本、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

 、闻帕、組合和概率:排列、組合應用題、二項式定理及其應用

 、细怕逝c統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  ⑿導數(shù):導數(shù)的概念、求導、導數(shù)的應用

 、褟蛿(shù):復數(shù)的概念與運算

  高考數(shù)學知識點總結(jié)歸納20

  一、準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題

  概念抽象、符號術語多是集合單元的一個顯著特點,例如交集、并集、補集的概念及其表示方法,集合與元素的關系及其表示方法,集合與集合的關系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點甚至是突破口。因此,要想學好集合的內(nèi)容,就必須在準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題上下功夫。

  二、注意弄清集合元素的性質(zhì),學會運用元素分析法審視集合的有關問題

  眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:

  (1)、確定性:集合中的元素應該是確定的,不能模棱兩可。

  (2)、互異性:集合中的元素應該是互不相同的,相同的元素在集合中只能算作一個。

  (3)、無序性:集合中的元素是無次序關系的。

  集合的關系、集合的運算等等都是從元素的角度予以定義的。因此,求解集合問題時,抓住元素的特征進行分析,就相當于牽牛抓住了牛鼻子。

  三、體會集合問題中蘊含的數(shù)學思想方法,掌握解決集合問題的基本規(guī)律

  布魯納說過,掌握數(shù)學思想可使得數(shù)學更容易理解和記憶,領會數(shù)學思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學習過程中,注意對這些數(shù)學思想進行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識,駕馭 集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。

  四、重視空集的特殊性,防止由于忽視空集這一特殊情況導致的解題失誤

  空集是一個十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時刻注意有無可能存在空集的情況,否則極易導致解題失誤。這一點,必須引起我們的高度重視。

  高考數(shù)學知識點總結(jié)歸納21

  數(shù)學圓的知識點

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有公共點為相切,這條直線叫做圓的切線,這個的公共點叫做切點。

  6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  圓--⊙半徑—r弧--⌒直徑—d

  扇形弧長/圓錐母線—l周長—C面積—S三、有關圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr?/360=rl/2

  5.圓錐側(cè)面積S=πrl

  數(shù)學學習方法

  1.先看筆記后做作業(yè)。

  有的同學感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學生對教師所說的理解沒有達到教師要求的水平。

  因此,每天做作業(yè)之前,我們必須先看一下課本的相關內(nèi)容和當天的課堂筆記。能否如此堅持,常常是好學生與差學生的最大區(qū)別。尤其是當練習不匹配時,老師通常沒有剛剛講過的練習類型,因此它們不能被比較和消化。如果你不重視這個實施,在很長一段時間內(nèi),會造成很大的損失。

  2.做題之后加強反思。

  學生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應該反思我們所做的每一個問題,并總結(jié)我們自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日復一日,建立科學的網(wǎng)絡系統(tǒng)的內(nèi)容和方法。俗話說: 有錢難買回頭看 。做完作業(yè),回頭細看,價值極大。這一回顧,是學習過程中一個非常重要的環(huán)節(jié)。

  我們應該看看我們做得對不對;還有什么解決辦法;問題在知識體系中的地位是什么;解決辦法的實質(zhì)是什么;問題中的知識是否可以與我們所要求的交換,以及我們是否可以作出適當?shù)难a充或刪除。有了以上五個回頭看,解題能力才能與日俱增。投入的時間雖少,效果卻很大?煞Q為事半功倍。

  有人認為,要想學好數(shù)學,只要多做題,功到自然成。數(shù)學要不要刷題?一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應該適當?shù)囟嗨㈩}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當成自己的目標,要把自己的活動合理地系統(tǒng)地組織起來,要總結(jié)反思,進行章節(jié)總結(jié)是非常重要的。

  數(shù)學學習技巧

  養(yǎng)成良好的課前和課后學習習慣:在當前高中數(shù)學學習中,培養(yǎng)正確的學習習慣是一項重要的學習技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學學習真的是反復嘗試和錯誤的。學生們不得不預習課本。我準備的數(shù)學教科書不是簡單的閱讀,而是一個例子,至少十分鐘的思考。在使用前不能通過學習知識解決問題的情況下,可以在教學內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時,在課堂上安排筆記也是必要的。在高中數(shù)學研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內(nèi)容的查詢。

【高考數(shù)學知識點總結(jié)歸納】相關文章:

數(shù)學高考精選知識點歸納11-08

高考數(shù)學的知識點歸納04-29

高考數(shù)學知識點歸納總結(jié)11-26

關于高考數(shù)學知識點歸納總結(jié)11-26

高考數(shù)學知識點歸納01-27

高考數(shù)學幾何知識點歸納09-10

高考數(shù)學知識點歸納范文02-16

高考數(shù)學易錯知識點歸納03-09

高考數(shù)學的知識點匯總歸納11-08

高考數(shù)學知識點整理歸納02-17