- 相關(guān)推薦
2023高考文科數(shù)學(xué)知識(shí)點(diǎn)
在平平淡淡的學(xué)習(xí)中,大家都背過(guò)不少知識(shí)點(diǎn),肯定對(duì)知識(shí)點(diǎn)非常熟悉吧!知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。為了幫助大家更高效的學(xué)習(xí),以下是小編為大家收集的2023高考文科數(shù)學(xué)知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 1
第一,函數(shù)與導(dǎo)數(shù)
主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用
這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用
這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)
這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
第七,解析幾何
高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 2
第一部分:選擇與填空
1.集合的基本運(yùn)算(含新定集合中的運(yùn)算,強(qiáng)調(diào)集合中元素的互異性);
2.常用邏輯用語(yǔ)(充要條件,全稱(chēng)量詞與存在量詞的判定);
3.函數(shù)的概念與性質(zhì)(奇偶性、對(duì)稱(chēng)性、單調(diào)性、周期性、值域最大值最小值);
4.冪、指、對(duì)函數(shù)式運(yùn)算及圖像和性質(zhì)
5.函數(shù)的零點(diǎn)、函數(shù)與方程的遷移變化(通常用反客為主法及數(shù)形結(jié)合思想);
6.空間體的三視圖及其還原圖的表面積和體積;
7.空間中點(diǎn)、線、面之間的位置關(guān)系、空間角的計(jì)算、球與多面體外接或內(nèi)切相關(guān)問(wèn)題;
8.直線的斜率、傾斜角的確定;直線與圓的位置關(guān)系,點(diǎn)線距離公式的應(yīng)用;
9.算法初步(認(rèn)知框圖及其功能,根據(jù)所給信息,幾何數(shù)列相關(guān)知識(shí)處理問(wèn)題);
10.古典概型,幾何概型理科:排列與組合、二項(xiàng)式定理、正態(tài)分布、統(tǒng)計(jì)案例、回歸直線方程、獨(dú)立性檢驗(yàn);文科:總體估計(jì)、莖葉圖、頻率分布直方圖;
11.三角恒等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數(shù)圖像與性質(zhì);
12.向量數(shù)量積、坐標(biāo)運(yùn)算、向量的幾何意義的應(yīng)用;
13.正余弦定理應(yīng)用及解三角形;
14.等差、等比數(shù)列的性質(zhì)應(yīng)用、能應(yīng)用簡(jiǎn)單的地推公式求其通項(xiàng)、求項(xiàng)數(shù)、求和;
15.線性規(guī)劃的應(yīng)用;會(huì)求目標(biāo)函數(shù);
16.圓錐曲線的性質(zhì)應(yīng)用(特別是會(huì)求離心率);
17.導(dǎo)數(shù)的幾何意義及運(yùn)算、定積分簡(jiǎn)單求法
18.復(fù)數(shù)的概念、四則運(yùn)算及幾何意義;
19.抽象函數(shù)的識(shí)別與應(yīng)用;
第二部分:解答題
第17題:向量與三角交匯問(wèn)題,解三角形,正余弦定理的實(shí)際應(yīng)用;
第18題:(文)概率與統(tǒng)計(jì)(概率與統(tǒng)計(jì)相結(jié)合型)
(理)離散型隨機(jī)變量的概率分布列及其數(shù)字特征;
第19題:立體幾何
、僮C線面平行垂直;面與面平行垂直
②求空間中角(理科特別是二面角的求法)
、矍缶嚯x(理科:動(dòng)態(tài)性)空間體體積;
第20題:解析幾何(注重思維能力與技巧,減少計(jì)算量)
、偾笄軌跡方程(用定義或待定系數(shù)法)
②直線與圓錐曲線的關(guān)系(靈活運(yùn)用點(diǎn)差法和弦長(zhǎng)公式)
、矍蠖c(diǎn)、定值、最值,求參數(shù)取值的問(wèn)題;
第21題:函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用
這是一道典型應(yīng)用知識(shí)網(wǎng)絡(luò)的交匯點(diǎn)設(shè)計(jì)的試題,是考查考生解題能力和文科數(shù)學(xué)素質(zhì)為目標(biāo)的壓軸題。
主要考查:分類(lèi)討論思想;化歸、轉(zhuǎn)化、遷移思想;整體代換、分與合思想
一般設(shè)計(jì)三問(wèn):
、偾蟠ㄏ禂(shù),利用求導(dǎo)討論確定函數(shù)的單調(diào)性;
②求參變數(shù)取值或函數(shù)的最值;
、厶骄啃詥(wèn)題或證不等式恒成立問(wèn)題。
第22題:三選一:
(1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長(zhǎng)度;利用射影定理解決圓中計(jì)算和證明問(wèn)題是歷年高考題的熱點(diǎn);
(2)坐標(biāo)系與參數(shù)方程,主要抓兩點(diǎn):參數(shù)方程、極坐標(biāo)方程互化為普通方程;有參數(shù)、極坐標(biāo)方程求解曲線的基本量。這類(lèi)題,思路清晰,難度不大,抓基礎(chǔ),不做難題。
(3)不等式選講:絕對(duì)值不等式與函數(shù)結(jié)合型。設(shè)計(jì)上為:
、俳夂袇⒆償(shù)關(guān)于x的不等式;
、谇蠼獠坏仁胶愠闪r(shí)參變數(shù)的取值;
、圩C明不等式(利用均值定理、放縮法等)。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 3
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。
二、平面向量和三角函數(shù)
對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
四、空間向量和立體幾何
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
五、概率和統(tǒng)計(jì)
概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。
六、解析幾何
這部分內(nèi)容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線和曲線的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(zhǎng)問(wèn)題;第四類(lèi)是對(duì)稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準(zhǔn)確度。
七、壓軸題
同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識(shí)點(diǎn):什么是直線方程
從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線平行;有無(wú)窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱(chēng)直線的斜率)來(lái)表示平面上直線(對(duì)于X軸)的傾斜程度。可以通過(guò)斜率來(lái)判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱(chēng)為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 4
一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問(wèn)題
概念抽象、符號(hào)術(shù)語(yǔ)多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問(wèn)題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問(wèn)題上下功夫。
二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問(wèn)題
眾所周知,集合可以看成是一些對(duì)象的全體,其中的每一個(gè)對(duì)象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
(3)、無(wú)序性:集合中的元素是無(wú)次序關(guān)系的。
集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問(wèn)題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。
三、體會(huì)集合問(wèn)題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問(wèn)題的基本規(guī)律
布魯納說(shuō)過(guò),掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類(lèi)討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過(guò)程中,注意對(duì)這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭 集合問(wèn)題的求解,而且對(duì)于開(kāi)發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。
四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤
空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過(guò)程中,要時(shí)刻注意有無(wú)可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 5
三角函數(shù)。
注意歸一公式、誘導(dǎo)公式的正確性。
數(shù)列題。
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問(wèn)題。
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 6
數(shù)學(xué)圓的知識(shí)點(diǎn)
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱(chēng)為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
圓--⊙半徑—r弧--⌒直徑—d
扇形弧長(zhǎng)/圓錐母線—l周長(zhǎng)—C面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱(chēng)圖形,其對(duì)稱(chēng)中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
1.圓的周長(zhǎng)C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長(zhǎng)l=nπr/180
4.扇形面積S=nπr?/360=rl/2
5.圓錐側(cè)面積S=πrl
數(shù)學(xué)學(xué)習(xí)方法
1.先看筆記后做作業(yè)。
有的同學(xué)感到,老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對(duì)教師所說(shuō)的理解沒(méi)有達(dá)到教師要求的水平。
因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒(méi)有剛剛講過(guò)的練習(xí)類(lèi)型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長(zhǎng)一段時(shí)間內(nèi),會(huì)造成很大的損失。
2.做題之后加強(qiáng)反思。
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問(wèn)題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問(wèn)題,并總結(jié)我們自己的收獲。
要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問(wèn)題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說(shuō): 有錢(qián)難買(mǎi)回頭看 。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過(guò)程中一個(gè)非常重要的環(huán)節(jié)。
我們應(yīng)該看看我們做得對(duì)不對(duì);還有什么解決辦法;問(wèn)題在知識(shí)體系中的地位是什么;解決辦法的實(shí)質(zhì)是什么;問(wèn)題中的知識(shí)是否可以與我們所要求的交換,以及我們是否可以作出適當(dāng)?shù)难a(bǔ)充或刪除。有了以上五個(gè)回頭看,解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大?煞Q(chēng)為事半功倍。
有人認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。數(shù)學(xué)要不要刷題?一般說(shuō)做的題太少,很多熟能生巧的問(wèn)題就會(huì)無(wú)從談起。因此,應(yīng)該適當(dāng)?shù)囟嗨㈩}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來(lái),要總結(jié)反思,進(jìn)行章節(jié)總結(jié)是非常重要的。
數(shù)學(xué)學(xué)習(xí)技巧
養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項(xiàng)重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯(cuò)誤的。學(xué)生們不得不預(yù)習(xí)課本。我準(zhǔn)備的數(shù)學(xué)教科書(shū)不是簡(jiǎn)單的閱讀,而是一個(gè)例子,至少十分鐘的思考。在使用前不能通過(guò)學(xué)習(xí)知識(shí)解決問(wèn)題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問(wèn)題的解決過(guò)程,掌握解決問(wèn)題的思路。同時(shí),在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對(duì)筆記內(nèi)容的查詢。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 7
易錯(cuò)點(diǎn)
混淆兩類(lèi)切線致誤
錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類(lèi)型的切線。
混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 8
1、向考生強(qiáng)調(diào):確保簡(jiǎn)單題全拿分,中檔題少失分
《考試說(shuō)明》中要求“高考數(shù)學(xué)考查中學(xué)的基礎(chǔ)知識(shí)、基本技能的掌握程度”,在“考查基礎(chǔ)知識(shí)的同時(shí),注重考查能力”!霸囶}設(shè)計(jì)力求情境熟、入口寬、方法多、有層次!
高考試題很大部分是簡(jiǎn)單題與中檔題,所以,學(xué)生如果基礎(chǔ)知識(shí)不掌握,那么還談什么能力呢?因此建議:老師們一定要引導(dǎo)考生在最后一個(gè)學(xué)期,加強(qiáng)基礎(chǔ)知識(shí)、基本方法的鞏固,保證簡(jiǎn)單題全拿分、中檔題少失分。
對(duì)于難題,則要鼓勵(lì)考生切不可放棄,第一小題要拿下,最后小題多角度地思考努力尋找恰當(dāng)方法,盡可能多拿分,平時(shí)一定要養(yǎng)成不會(huì)做的難題拿步驟分的習(xí)慣。
2、引導(dǎo)考生學(xué)會(huì)反思?xì)w納,學(xué)會(huì)反思命題者出題意圖
《考試說(shuō)明》指出,試題要“注重通性通法”、“常規(guī)方法”。根據(jù)此,老師們要做的是:
首先,引導(dǎo)考生反思?xì)w納,尋找“通性通法”“常規(guī)方法”。
數(shù)學(xué)需要一定的訓(xùn)練量,幾天不練就會(huì)感覺(jué)手生,但題海戰(zhàn)術(shù)并不可取,因?yàn)轭}海戰(zhàn)術(shù)會(huì)擠占反思的時(shí)間。因此平時(shí)在做練習(xí)模擬卷時(shí),做完題目,除了訂正,還應(yīng)該反思。
《考試說(shuō)明》中關(guān)于空間想象能力是這樣敘述的:“能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì)。”
其次,引導(dǎo)考生反思命題人為什么出這個(gè)題,想考查什么?
比如立體幾何解答題為什么是這樣出題的?顯而易見(jiàn),要考查空間想象能力。因此做完立體幾何解答題后,要再審視一下,這個(gè)幾何體是怎樣構(gòu)成的,幾何元素間有哪些關(guān)系。再比如,對(duì)于很多考生而言,解析幾何難于計(jì)算,為什么難?因?yàn)椴粫?huì)“尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑”!
解析幾何解答題沒(méi)有過(guò)關(guān)的學(xué)生,引導(dǎo)他們反思下自己的運(yùn)算求解能力,平時(shí)遇到計(jì)算時(shí),不可畏難退卻,認(rèn)認(rèn)真真地做透幾個(gè)解析幾何解答題,體會(huì)其中的基本技巧,運(yùn)算求解能力也就培養(yǎng)起來(lái)了。
3、用考試說(shuō)明,引導(dǎo)考生查漏補(bǔ)缺,提高復(fù)習(xí)效率
用《考試說(shuō)明》引導(dǎo)學(xué)生查漏補(bǔ)缺,看看有哪些知識(shí)點(diǎn)考生已經(jīng)達(dá)到了考試要求,有哪些還沒(méi)有達(dá)到。比如“會(huì)求一些簡(jiǎn)單的函數(shù)的值域”,考生不僅要能夠說(shuō)出求值域的常用方法——觀察法、配方法、換元法、圖象法、單調(diào)性法等,還應(yīng)該說(shuō)得出與方法對(duì)應(yīng)的經(jīng)典例題。對(duì)于沒(méi)有達(dá)到考試要求的知識(shí)點(diǎn),就需要重點(diǎn)加強(qiáng)、專(zhuān)項(xiàng)突破。
對(duì)于不知道的“數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理”,需要認(rèn)真地看教材,補(bǔ)上短板。比如“理解函數(shù)的最大(小)值及其幾何意義,并能求出函數(shù)的最大值”,如果說(shuō)不出最值的幾何意義,就應(yīng)該再看一遍教材上關(guān)于最大(小)的定義。
通過(guò)研讀考試說(shuō)明,把考試說(shuō)明先讀厚再讀薄,對(duì)基礎(chǔ)知識(shí)、基本技能進(jìn)行網(wǎng)絡(luò)化的加工整理,發(fā)現(xiàn)知識(shí)內(nèi)在的聯(lián)系與規(guī)律,形成脈絡(luò)清晰、主線突出的知識(shí)體系,從而有利于快速提取知識(shí)解決問(wèn)題。
比如關(guān)于“恒成立問(wèn)題”的知識(shí)網(wǎng)絡(luò)構(gòu)建,應(yīng)該知道有四種常見(jiàn)的解法,一是變量分離,二是轉(zhuǎn)化為最值問(wèn)題,三是圖象法,四是轉(zhuǎn)換主元法,應(yīng)該知道四種解法內(nèi)在的聯(lián)系與區(qū)別是什么,除此之外,還應(yīng)該知道“恒成立問(wèn)題”與“存在性問(wèn)題”的區(qū)別。建議考生畫(huà)出這張知識(shí)網(wǎng)絡(luò),在考試中遇到“恒成立問(wèn)題”,就可以根據(jù)這張網(wǎng)絡(luò)快速探索合適的解題方法。
數(shù)學(xué)對(duì)于文科生來(lái)說(shuō)是個(gè)大難題,有些同學(xué)甚至“談數(shù)學(xué)色變”。其實(shí)只要掌握恰當(dāng)?shù)膶W(xué)習(xí)方法,文科生一樣可以學(xué)好數(shù)學(xué)并在高考中取得滿意的分?jǐn)?shù)。
■杜絕負(fù)面的自我暗示
首先對(duì)數(shù)學(xué)學(xué)習(xí)不要抱有放棄的想法。有些同學(xué)認(rèn)為數(shù)學(xué)差一點(diǎn)沒(méi)關(guān)系,只要在其他三門(mén)文科上多用功就可以把總分補(bǔ)回來(lái),這種想法是非常錯(cuò)誤的。我高三時(shí)的班主任曾經(jīng)說(shuō)過(guò)一個(gè)“木桶原理”:一只木桶盛水量的多少取決于它最短的一塊木板。高考也是如此,只有各科全面發(fā)展才能取得好成績(jī)。其次是要杜絕負(fù)面的自我暗示。高三一年會(huì)有許許多多的考試,不可能每一次都取得自己理想的成績(jī)。在失敗的時(shí)候不要有“我肯定沒(méi)希望了”、“我是學(xué)不好了”這樣的暗示,相反的,要對(duì)自己始終充滿信心,最終成功會(huì)到你的身邊。
■抄筆記別丟了“西瓜”
高考數(shù)學(xué)試卷中大部分的題目都是基礎(chǔ)題,只要把這些基礎(chǔ)題做好,分?jǐn)?shù)便不會(huì)低了。要想做好基礎(chǔ)題,平時(shí)上課時(shí)的聽(tīng)課效率便顯得格外重要。一般教高三的都是有著豐富經(jīng)驗(yàn)的老師,他們上課時(shí)的內(nèi)容可謂是精華,認(rèn)真聽(tīng)講45分鐘要比自己在家復(fù)習(xí)2個(gè)小時(shí)還要有效。聽(tīng)課時(shí)可以適當(dāng)?shù)刈鲂┕P記,但前提是不影響聽(tīng)課的效果。有些同學(xué)光顧著抄筆記卻忽略了老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。
■題目最好做兩遍
要想學(xué)好數(shù)學(xué),平時(shí)的練習(xí)必不可少,但這并不意味著要進(jìn)行題海戰(zhàn)術(shù),做練習(xí)也要講究科學(xué)性。在選擇參考書(shū)方面可以聽(tīng)一下老師的意見(jiàn),一般來(lái)說(shuō)老師會(huì)根據(jù)自己的教學(xué)方式和進(jìn)度給出一定的建議,數(shù)量基本在1—2本左右,不要太多。在選好參考書(shū)以后要認(rèn)真完整地做,每一本好的參考書(shū)都存在著一個(gè)知識(shí)體系,有些同學(xué)這本書(shū)做一點(diǎn),那本書(shū)做一點(diǎn),到最后做了許多本書(shū)但都沒(méi)有做完,無(wú)法形成一個(gè)完整的知識(shí)體系,效果反而不好。做題的時(shí)候要多做簡(jiǎn)單題,并且要定好時(shí)間,這樣可以提高解題速度。在高考前的沖刺階段要保證1—2天做一套試卷來(lái)保持狀態(tài)。最重要的是要通過(guò)做題發(fā)現(xiàn)并解決自己已有的問(wèn)題,總結(jié)出各類(lèi)題目的解題方法并且熟練掌握。在這里有兩個(gè)小建議:一是在做填空選擇題時(shí)可以在旁邊的空白處寫(xiě)一些解題過(guò)程以方便以后復(fù)習(xí);二是題目最好做兩遍以上,可以加深印象。
■應(yīng)考時(shí)要舍得放棄
對(duì)于大部分?jǐn)?shù)學(xué)基礎(chǔ)不是很扎實(shí)的同學(xué)來(lái)說(shuō),放棄最后兩題應(yīng)該是一個(gè)比較明智的選擇。高考數(shù)學(xué)試卷的最后兩題對(duì)于能力的要求較高,數(shù)學(xué)較弱的同學(xué)不要花太多的時(shí)間在上面,而應(yīng)把精力放在前面的基礎(chǔ)題上,這樣成績(jī)反而會(huì)有所提高。高考的大題目都是按過(guò)程給分的,所以萬(wàn)一遇到不會(huì)的題也不要空著,應(yīng)根據(jù)題意盡量多寫(xiě)一些步驟。在對(duì)待粗心這個(gè)常見(jiàn)問(wèn)題上,我有兩個(gè)建議:一是少打草稿,把步驟都寫(xiě)在試卷上;二是規(guī)范草稿,讓草稿一目了然,這樣便不太會(huì)出現(xiàn)看錯(cuò)或抄錯(cuò)的現(xiàn)象了。考試中有時(shí)可以用代數(shù)字、特殊情況和計(jì)算器等方法來(lái)提高解題速度解決難題,但在考試過(guò)后一定要把題目正規(guī)的解題思路了解清楚。每一次考試的試卷和高考前各區(qū)的模擬卷都是珍貴的復(fù)習(xí)資料,一定要妥善保存。
高考文科數(shù)學(xué)知識(shí)點(diǎn) 9
遺忘空集致誤
錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。空集是一個(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。
忽視集合元素的三性致誤
錯(cuò)因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。
四種命題的結(jié)構(gòu)不明致誤
錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫(xiě)出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱(chēng)命題的否定是特稱(chēng)命題,特稱(chēng)命題的否定是全稱(chēng)命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
充分必要條件顛倒致誤
錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類(lèi)問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
求函數(shù)定義域忽視細(xì)節(jié)致誤
錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開(kāi)放式非負(fù);
(3)真數(shù)大于0;
(4)0的0次冪沒(méi)有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤
錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;二是畫(huà)出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開(kāi)函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤
錯(cuò)因分析:求函數(shù)奇偶性的常見(jiàn)錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱(chēng),如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱(chēng)的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。
抽象函數(shù)中推理不嚴(yán)密致誤
錯(cuò)因分析:很多抽象函數(shù)問(wèn)題都是以抽象出某一類(lèi)函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類(lèi)比這類(lèi)函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫(xiě)規(guī)范。
函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱(chēng)之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。
混淆兩類(lèi)切線致誤
錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類(lèi)型的切線。
混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒(méi)有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
用錯(cuò)基本公式致誤
錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。
an,Sn關(guān)系不清致誤
錯(cuò)因分析:在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過(guò)數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。
對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤
錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類(lèi)題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問(wèn)題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問(wèn)題時(shí)要注意這個(gè)特殊情況。
【高考文科數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
高考文科數(shù)學(xué)應(yīng)試技巧05-25
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)06-18
數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)08-20
高考數(shù)學(xué)必考知識(shí)點(diǎn)03-20
【精選】高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-06
高考數(shù)學(xué)必背知識(shí)點(diǎn)05-08