亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

考試反思

因數(shù)和倍數(shù)教學(xué)反思

時間:2024-06-22 07:42:18 考試反思 我要投稿

因數(shù)和倍數(shù)教學(xué)反思(通用30篇)

  在快速變化和不斷變革的新時代,我們要有一流的課堂教學(xué)能力,反思是思考過去的事情,從中總結(jié)經(jīng)驗教訓(xùn)。我們該怎么去寫反思呢?下面是小編幫大家整理的因數(shù)和倍數(shù)教學(xué)反思(通用30篇),歡迎大家分享。

因數(shù)和倍數(shù)教學(xué)反思(通用30篇)

  因數(shù)和倍數(shù)教學(xué)反思 篇1

  一、教材與知識點的對比與區(qū)別。

  1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。

  有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心!耙驍(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別:

  (1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

  (2)“約數(shù)”一詞被“因數(shù)”所取代。

  這樣的變化原因何在?教師必須要認真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學(xué)習(xí)教參了解到以下信息:

  學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學(xué)化定義。

  2、相似概念的對比。

  (1)彼“因數(shù)”非此“因數(shù)”。

  在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“X是X的因數(shù)”時,兩者都只能是整數(shù)。

  (2)“倍數(shù)”與“倍”的區(qū)別。

  “倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的.倍數(shù)時,運用的方法與“求一個數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運用實踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分數(shù)無關(guān),與負數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

  2、在進行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應(yīng)該要注意的細節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的。

  因數(shù)和倍數(shù)教學(xué)反思 篇2

  今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因為在乘法算式中已經(jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:

  一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象。

  在教學(xué)的時候,我首先通過課本上飛機圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助 “形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點,讓學(xué)生很輕松的接受了知識的形成。

  二、自主探究以鄰為師。

  在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強,能夠用數(shù)學(xué)語言來準確的表述,而且大多數(shù)學(xué)生在合作的過程中也能很好的找到、找全18的所有的因數(shù)。

  三、在練習(xí)中體驗學(xué)習(xí)的快樂

  在 最后的環(huán)節(jié)中我設(shè)計了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的意義的一些練習(xí)題,加深對知識點的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨存在的, 是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的.設(shè)計用了不同 的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體 驗到學(xué)習(xí)的快樂。

  不足之處:

  1、在本節(jié)課的教學(xué)上還是存在很多哦不足之處,雖然自己也知道新課標提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。

  2、這堂課我的個人語言過于貧乏和隨意,數(shù)學(xué)是嚴謹?shù),隨意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。另外課堂評價性的語言也不多,可以說是幾乎沒有。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。而且自己也要把握好各種學(xué)習(xí)機會,不斷的學(xué)習(xí),也要多反思認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。希望自己也能越來越好!

  因數(shù)和倍數(shù)教學(xué)反思 篇3

  《因數(shù)和倍數(shù)》是新舊教材的精典內(nèi)容,在解讀教材的過程中我翻閱了好幾個版本的相關(guān)內(nèi)容,教學(xué)案設(shè)計幾易其稿,最終達到了預(yù)期的教學(xué)效果。當(dāng)下課鈴聲響起那一刻,聽到學(xué)生爭論不休的走出教室,不僅感慨萬千。回味整個教學(xué)過程我有以下體會:

  一、教師要創(chuàng)造性的使用處理教材:

  數(shù)學(xué)教材凝聚著縱多專家、學(xué)者的經(jīng)驗和智慧。仔細研讀比較不同版本的教材,仔細研讀有助于你對教材的理解。在研讀中我發(fā)現(xiàn)在此教學(xué)內(nèi)容中數(shù)形結(jié)合是多種不同教材版本要滲透結(jié)合的數(shù)學(xué)思想,但也有的教材沒有結(jié)合,那么到底哪種效果好呢?為此我對試教后的學(xué)生進行訪談,發(fā)現(xiàn)用“12個大小一樣的小正方形拼成大長方形”形式引入,更有助于學(xué)困生對5不是24的因數(shù)的理解,所以我對教材內(nèi)容的飛機圖作了改動,這是其一。其二創(chuàng)造性的使用教材還體現(xiàn)在:對教材中讓學(xué)生找18、30、36因數(shù)這一內(nèi)容,備課中我們發(fā)現(xiàn)教材沒有例舉找單數(shù)的因數(shù),這樣不利于學(xué)生發(fā)現(xiàn)一個數(shù)的因數(shù)的特點,所以我把30換成了23,才有了學(xué)生在上課過程中對一個數(shù)的因數(shù)特征的精彩發(fā)言:有的數(shù)的因數(shù)個數(shù)是雙數(shù),有的數(shù)的因數(shù)個數(shù)是單數(shù)、有的數(shù)的因數(shù)只有他自己和1。其三創(chuàng)造性的使用教材還體現(xiàn)在:對于因數(shù)和倍數(shù)韋恩圖的表示方法,我直接讓學(xué)生在練習(xí)時進行嘗試,學(xué)生同樣得以解決,節(jié)省了教學(xué)的時間。

  二、教師要善于利用課前課后的“邊角料”

  由于本節(jié)課教學(xué)內(nèi)容多,若放手讓學(xué)生自主探究,教學(xué)時間和教學(xué)任務(wù)的矛盾就凸現(xiàn)出來,為此對于教學(xué)任務(wù)重的課教師要善于利用課前一分鐘學(xué)生注意力還沒集中的時候進行課前談話,形式內(nèi)容要注重趣味性和教學(xué)內(nèi)容的聯(lián)系性。如本課的教學(xué)環(huán)節(jié)一我安排在課前進行,利用學(xué)生進入微格教室上課前一分鐘時間進行了“猜謎語和玩腦筋急轉(zhuǎn)彎”的游戲,這樣既落實了教學(xué)環(huán)節(jié)又節(jié)省了教學(xué)時間,更重要是讓學(xué)生在此過程中作好思想上和學(xué)法上的準備,可謂一石三鳥。課后通過游戲——破解數(shù)學(xué)寶盒的密碼,讓學(xué)生帶著這個問題下課,讓學(xué)生自己課外去研究。

  三、學(xué)生建構(gòu)意義需要一個過程

  受老教材的影響,總想讓學(xué)生對因數(shù)和倍數(shù)意義的理解在學(xué)生學(xué)找一個數(shù)的因數(shù)之前學(xué)透,所以把教學(xué)時間的重心放在學(xué)生對因數(shù)和倍數(shù)意義的`理解上,在具體的教學(xué)實踐中曾把例2放到第二教時完成,甚至出現(xiàn)把因數(shù)和倍數(shù)意義上一教時的想法,實踐后發(fā)現(xiàn)學(xué)生對于因數(shù)和倍數(shù)意義理解不透不是由于教學(xué)處理的問題,其本質(zhì)學(xué)生建構(gòu)意義是需要一個過程,并且教材中把因數(shù)倍數(shù)及學(xué)找一個數(shù)的因數(shù)和倍數(shù)方法放在一教時有他更深的意義,目的是通過學(xué)找一個數(shù)的因數(shù)或倍數(shù),進一步加深對因數(shù)、倍數(shù)意義的理解,讓學(xué)生在找中體會因數(shù)和倍數(shù)的意義的內(nèi)涵和外延。所以在教學(xué)因數(shù)和倍數(shù)意義中雖然沒有直接點出XX是XX的因數(shù)或倍數(shù),而是讓學(xué)生經(jīng)過大量的感性認識后,直到最后判斷中出現(xiàn):16是倍數(shù),8是因數(shù),但學(xué)生能清楚說出其錯誤的原因,從這題的學(xué)生反應(yīng)看,學(xué)生對于因數(shù)和倍數(shù)的意義理解是深刻的。

  因數(shù)和倍數(shù)教學(xué)反思 篇4

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的'概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強調(diào),協(xié)助小朋友們認真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

  因數(shù)和倍數(shù)教學(xué)反思 篇5

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學(xué)生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。

  一、設(shè)計情境,引起思考。

  改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。

  二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。

  如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的`因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。

  根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進行,才能達到教學(xué)的目的。

  因數(shù)和倍數(shù)教學(xué)反思 篇6

  因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認識了乘法各部分名稱,對“倍”葉有了初步的認識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

  在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的.順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。

  本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

  因數(shù)和倍數(shù)教學(xué)反思 篇7

  《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。

  本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個學(xué)生都能參加到數(shù)學(xué)知識的學(xué)習(xí)中去,調(diào)動學(xué)生學(xué)習(xí)的興趣和主動性。本節(jié)課主要從以下幾個方面進行教學(xué)的。

  一:動手操作,探究方法.

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,變抽象為具體。

  二、倍數(shù)教學(xué),發(fā)現(xiàn)特點。

  利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:

  (1)3的倍數(shù)應(yīng)該是3與一個數(shù)相乘的積。

 。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點奠定基礎(chǔ)。

  最后讓學(xué)生通過討論發(fā)現(xiàn):

 。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。

 。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

  三、因數(shù)教學(xué),發(fā)現(xiàn)特點。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進一步理解。強調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的`因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點:

 。1)一個數(shù)因數(shù)的個數(shù)是有限的。

  (2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).

  四、練習(xí)反饋情況

  從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯的,有部分基礎(chǔ)差的學(xué)生,有如下幾點錯誤出現(xiàn):

  1、倍數(shù)沒有加省略號。

  2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。

  3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補差工作;同時要注意教學(xué)中細節(jié)的處理。

  因數(shù)和倍數(shù)教學(xué)反思 篇8

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的.整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強調(diào),幫助學(xué)生認真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

  因數(shù)和倍數(shù)教學(xué)反思 篇9

  本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進行教學(xué)的。

  課堂中,我首先讓學(xué)生理解分類標準,明確因數(shù)和倍數(shù)的.含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進行分類,同時思考其標準依據(jù)是什么。通過學(xué)生的獨立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

  本節(jié)課的不足之處:

  1.練習(xí)設(shè)計容量少了一些,導(dǎo)致課堂有剩余時間。

  2.對因數(shù)和倍數(shù)的含義還應(yīng)該進行歸納總結(jié)上升到用字母來表示。

  因數(shù)和倍數(shù)教學(xué)反思 篇10

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。

  數(shù)學(xué)課程標準“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標的指向:適應(yīng)并促進學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學(xué):

  (1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。

  因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。 通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。

  (2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。

  因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的.因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。

  (3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。

  “數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進行空間想象。

  (4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。

  教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。

  (5)趣味活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。

  只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。

  因數(shù)和倍數(shù)教學(xué)反思 篇11

  一.?dāng)?shù)形結(jié)合減緩難度

  《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學(xué)生的形象思維,而透過數(shù)學(xué)潛在的“形”與“數(shù)”的關(guān)系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉(zhuǎn)入抽象思維打下了良好基礎(chǔ),有效地實現(xiàn)了原有知識與新學(xué)知識之間的鏈接。在學(xué)生已有的知識基礎(chǔ)上,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二.自主探究,合作學(xué)習(xí)

  放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的

  難點。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的'不同中通過合作交流找到相同。

  三.在游戲中體驗學(xué)習(xí)的快樂

  在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。這樣由淺入深的設(shè)計符合學(xué)生跳一跳就能摘到果子的心理,同時也讓學(xué)生在游戲中再次體驗因數(shù)與倍數(shù)的特點,如找完因數(shù)朋友時我以你是我的最大的因數(shù)朋友點出一個數(shù)的因數(shù)的個數(shù)是有限的,找倍數(shù)朋友時起來的學(xué)生非常多,讓學(xué)生再次體驗一個數(shù)的倍數(shù)的個數(shù)是無限的。找共同的朋友則是一個思維的升華過程,能有效地激活學(xué)生的思維,在求知欲的支配下去進行有效地思考。這一環(huán)節(jié)使課堂氣氛更加熱烈,也讓學(xué)生在輕松的氛圍中體驗到學(xué)習(xí)的快樂。

  這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找36的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。雖然是新理念

  但卻沿用了舊模式,在今后的教學(xué)中我還要不斷改進自己的教法,讓學(xué)生成為課堂的真正主人。

  這堂課我的個人語言過于隨意,數(shù)學(xué)是嚴謹?shù),隨意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。由于長期的教學(xué)習(xí)慣和自身的性格特點造成了我的語言在某些時候不夠嚴謹。這一點我心里非常清楚,在日常的教學(xué)中也在不斷地改正,但這節(jié)課有的地方還是沒有注意到。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機會,通過各種渠道不斷的學(xué)習(xí),提高自己的素質(zhì)。多反思認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。

  感謝各位老師給我這么一個寶貴的學(xué)習(xí)機會,并在這個過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴格要求自己,爭取在今后的工作中做的更好!

  因數(shù)和倍數(shù)教學(xué)反思 篇12

  開學(xué)后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自己對因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏找出一個數(shù)的因數(shù)是本課的難點,絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對一對的'找,可遺漏的多,在這里我強調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點,我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時間不夠,我只要求孩子從因數(shù)的個數(shù),最小,最大的因數(shù)考慮,沒有對質(zhì)數(shù),合數(shù),公因數(shù)進行滲透。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點。

  針對這節(jié)課,課后老師們就這堂課認真評析,真誠的說出自己的觀點,特別就知識的生長點、教學(xué)的重難點展開了討論,特別是找一個數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點:知識的滲透點、練習(xí)發(fā)展點、層次切入點、設(shè)計巧妙點、教法多樣點、語言動聽點、管理到位點、應(yīng)變靈活點。

  這幾點既是目標也是方向,相信我們在新的一學(xué)期,團結(jié)協(xié)作,勤奮務(wù)實,努力朝著目標前進。

  因數(shù)和倍數(shù)教學(xué)反思 篇13

  《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。

  一、領(lǐng)會意圖,做到用教材教。

  我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

  但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)。看來靈活的運用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!

  二、模式運用,做到靈活自然。

  模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

  如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的'設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

  因數(shù)和倍數(shù)教學(xué)反思 篇14

  《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時我首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的'因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進作用。

  最后引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。

  由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強,學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。

  因數(shù)和倍數(shù)教學(xué)反思 篇15

  本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點。

  成功之處:

  1.構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的相互聯(lián)系。在教學(xué)中,我首先通過一個聯(lián)想接龍的游戲調(diào)動學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識來描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、2、4、6、8的`數(shù),通過學(xué)生的回答教師及時抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2、3、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識之間的聯(lián)系呢?通過學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對這些概念的聯(lián)系有了更進一步的認識,然后通過選取幾名同學(xué)的作品進行展評,最后教師和學(xué)生共同進行整理和調(diào)整,最終來完善知識之間的網(wǎng)絡(luò)體系。

  2.在練習(xí)中進一步對概念進行有針對性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是以練習(xí)促復(fù)習(xí),在練習(xí)中更好的體會這些概念的具體含義,加深學(xué)生對概念的理解和掌握。

  不足之處:

  個別學(xué)生在展評中不會去評價,只是從設(shè)計的美觀上去思考,而沒有從體現(xiàn)知識之間的聯(lián)系上去進行說明。

  再教設(shè)計:

  抓住數(shù)學(xué)知識的本質(zhì),美觀的整理形式只是一些外在的,并不是重點。

  因數(shù)和倍數(shù)教學(xué)反思 篇16

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

  一、 操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先根據(jù)一道應(yīng)用題,通過對學(xué)生隊伍的理解讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)的'方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。

  因數(shù)和倍數(shù)教學(xué)反思 篇17

  《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。

  比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的'認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。

  新課標實施的過程是一個不斷學(xué)習(xí)、探究、研究和提高的過程,在這個過程中,需要我們認真反思、獨立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實踐和探索中不斷前進。

  因數(shù)和倍數(shù)教學(xué)反思 篇18

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。

  也許我的頭腦還受舊版教材的影響,我認為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。

  1、 在教學(xué)2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準確找出各自的倍數(shù),此時,教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時是2和5的倍數(shù)的特征,因此,讓學(xué)生的知識面進一步加大。

  2、教學(xué)3的倍數(shù)的特征時,教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運用這一特點,教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進一步得到鞏固;當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時,教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的.特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴大,達到知識的鞏固和遷移的目的。

  3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時,教師這時應(yīng)引導(dǎo)學(xué)生進一步歸納、總結(jié),把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。

  通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

  因數(shù)和倍數(shù)教學(xué)反思 篇19

  聽了陶老師執(zhí)教的《倍數(shù)和因數(shù)》一課,我有以下幾點體會。

  1、倍數(shù)和因數(shù)是一個比較抽象的知識。在教學(xué)中,陶老師讓學(xué)生擺出圖形,通過乘法算式來認識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會其意義。在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,陶老師還設(shè)計了讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),讓學(xué)生明白除法算式中也能找出倍數(shù)和因數(shù)。最后,陶老師出示了五個數(shù),讓學(xué)生從中找找,說說誰是誰的倍數(shù),誰是誰的因數(shù)。這一設(shè)計既是對上面內(nèi)容的.提升,又引出了下面的內(nèi)容。

  2、一個數(shù)的因數(shù)和倍數(shù)的尋找,課本上是安排先教學(xué)倍數(shù)后教學(xué)因數(shù)的。陶老師在教學(xué)時,打破了教材的安排,首先教學(xué)找一個數(shù)的因數(shù)。我覺得這樣做比較好,找因數(shù)的方法比較難一點點,它需要學(xué)生的逆向思維,所以陶老師一步一步的引導(dǎo)著學(xué)生,扶放結(jié)合地讓學(xué)生去探索找一個數(shù)因數(shù)的方法,隨后再去教學(xué)找一個數(shù)的倍數(shù),學(xué)生就容易找準了。這樣安排既承接了上面的內(nèi)容,又為學(xué)生一個數(shù)的倍數(shù)提供了方法。

  因數(shù)和倍數(shù)教學(xué)反思 篇20

  這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式來認識倍數(shù)和因數(shù),從而體會倍數(shù)和因數(shù)的意義,進而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。

  這部分知識對于四年級學(xué)生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學(xué)們講了韓信點兵的故事,從一個同余問題的解決讓學(xué)生產(chǎn)生興趣,并告知學(xué)生所用知識與本節(jié)課所學(xué)知識有很大關(guān)聯(lián),引導(dǎo)學(xué)生認真學(xué)好本節(jié)課的知識。

  在教授倍數(shù)和因數(shù)時,我讓學(xué)生自己動手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認識倍數(shù)和因數(shù),并且讓學(xué)生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學(xué)生的自身素材去理解概念,使學(xué)生對新知識印象更深刻,從而使學(xué)生進一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學(xué)生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會倍數(shù)和因數(shù)是一種相互依存的關(guān)系,以致到后面做判斷時出現(xiàn)很多同學(xué)認為“6是因數(shù),24是倍數(shù)”這種說法是正確的`。

  本節(jié)課的難點是找一個數(shù)的因數(shù),因此,我將教材中先教找一個數(shù)的倍數(shù)改成先教找一個數(shù)的因數(shù),也正因為找一個數(shù)的因數(shù)比較有難度,所以,我先讓學(xué)生根據(jù)之前例題中的三個乘法算式來說一說12的因數(shù),從而讓學(xué)生感受到找一個數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學(xué)生感受有序的思想,給學(xué)生一個方法的認知。為了讓學(xué)生得到反思,在找的過程中,請學(xué)生互評,在交流中產(chǎn)生思維的碰撞;請學(xué)生自己糾正,在錯誤中產(chǎn)生反思意識,從而能夠提升學(xué)生自主解決問題的能力。

  可是,作為一名新教師,對于課堂中的生成,沒有足夠的經(jīng)驗和課堂機智將其很好的轉(zhuǎn)化成學(xué)生所需達到的目標,以致跟預(yù)設(shè)的效果不一致,學(xué)生沒有很充分地得到反思。并且對于課堂中的一些細節(jié)問題,處理得還不夠到位。本節(jié)課的教學(xué)對于我來說是一個機會,也是一個契機,今后,我會不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴格要求自己,爭取在今后的工作中做的更好!

  因數(shù)和倍數(shù)教學(xué)反思 篇21

  在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的'甜頭,F(xiàn)在剛好又教了這個內(nèi)容,仔細參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。

  新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式2×6=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!

  這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

  因數(shù)和倍數(shù)教學(xué)反思 篇22

  我在教學(xué)時做到了以下幾點:

 。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

  今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認識倍數(shù)與因數(shù)的關(guān)系,

 。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。

  我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  (3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法

  雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

 。4)設(shè)計有趣游戲活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。

  譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的'發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂

  因數(shù)和倍數(shù)教學(xué)反思 篇23

  總的感覺是上好一堂課不容易。當(dāng)確定好內(nèi)容后,我和吳艷、顧志成三人各自備課,第二天放學(xué)后化了整整一個半小時討論教案,后又幾經(jīng)修改,但總感到時間來不及。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個新概念,是純知識性的內(nèi)容,學(xué)起來比較枯燥。如何使學(xué)生通過四十分鐘愉快輕松的學(xué)習(xí)掌握這乏味的概念性內(nèi)容,如何開頭,各部分之間怎樣銜接,每一個知識點采取何種形式呈現(xiàn)、展開,重點如何突出,難點如何突破,那幾天這許多問題始終盤繞在腦海中,課上下來根據(jù)學(xué)生的參與情況,掌握程度可以說達到了教學(xué)目標。我覺得整個課堂教學(xué)注意了以下幾點:

  1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。

  試上下來我感覺學(xué)生對倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用學(xué)生喬雨雷、喬風(fēng)光兄弟間的關(guān)系呀,于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。

  2、注意引導(dǎo)學(xué)生進行有效的合作學(xué)習(xí)。

  動手實踐、自主探索、合作交流是新課程倡導(dǎo)的學(xué)習(xí)方式,公開課不管上的什么內(nèi)容,不管有沒有必要往往都要叫學(xué)生討論,看起來熱熱鬧鬧,其實有多少學(xué)生真正參與了討論。往往是一組中的優(yōu)等生把答案說出,其他學(xué)生洗耳恭聽。當(dāng)3、2、5的倍數(shù)寫出來后,我問:“整體觀察這幾個數(shù)的倍數(shù),你認為一個數(shù)的倍數(shù)有什么特點?”首先問題有討論的價值與必要性,其次當(dāng)問題提出后我先讓學(xué)生獨立思考,看到學(xué)生陸續(xù)舉手時,再組織學(xué)生討論交流,完善自己的想法。(其實這是我一貫的做法,必須在每個學(xué)生獨立思考的基礎(chǔ)上進行合作學(xué)習(xí)。)

  3、內(nèi)容環(huán)環(huán)相扣、過度自然流暢。

  從生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)因數(shù),從而揭示課題,引出誰是誰的倍數(shù),誰是誰的因數(shù),到找一個數(shù)的倍數(shù)或因數(shù),歸納找的方法。整個教學(xué)過程環(huán)環(huán)緊扣、一氣呵成,通達順暢。

  4、練習(xí)設(shè)計由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維。

  “找朋友”游戲,答案不唯一,學(xué)生思考問題的'空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),老師手里拿了2、3、5幾張數(shù)字卡片,老師出示卡片,如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)就可以站起來。最后留下了學(xué)號是1、7、11、13、17、19、23、29、31、37、41、43、47的學(xué)生,讓學(xué)生想辦法如果他們也要站起來,老師出示的卡片上應(yīng)是幾?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。

  疑問:一開始的擺12個小正方形拼成長方形,得出三個積是12的乘法算式,我想這里的操作可否省去?一方面用去時間較多,對教學(xué)內(nèi)容關(guān)系不大,如果說是培養(yǎng)操作能力也不是在這個時候。另一方面這堂課練習(xí)時間比較少,擠出的時間可用于練習(xí)。

  我想如果我們每堂課都能精心設(shè)計的話,對學(xué)生對我們教師都會有很大的提高。

  因數(shù)和倍數(shù)教學(xué)反思 篇24

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些改動,讓學(xué)生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的'概念.

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認識了倍數(shù)之后,我進行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這不比老師給予的有效得多。

  因數(shù)和倍數(shù)教學(xué)反思 篇25

  《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:

  1.在第一個環(huán)節(jié)認識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。

  針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。

  2。第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?

  針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么?梢詥枺簞偛耪伊2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。

  3。第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。

  我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的'因數(shù)時就會好一些。

  在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。

  4。第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。

  原本認為簡單的課卻一點都不簡單,每個細小環(huán)節(jié)的把握都要求我去仔細的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。

  因數(shù)和倍數(shù)教學(xué)反思 篇26

  一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。

  二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結(jié)合,防止學(xué)生進行“機械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。

  三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。

  四、困惑:

  1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的'空間真的擴大了,課堂活躍了,但是同時給學(xué)生進行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

  2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑

  因數(shù)和倍數(shù)教學(xué)反思 篇27

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的.學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時,補充了兩道判斷題請學(xué)生辨析:

  11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

  特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補了未進行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進行了對比。

  因數(shù)和倍數(shù)教學(xué)反思 篇28

  不知不覺,我們又進行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。

  1、以往認識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)。現(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分數(shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。

  3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。

  可見,編者為體現(xiàn)新課標精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學(xué)完了本單元的.第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。

  因數(shù)和倍數(shù)教學(xué)反思 篇29

  《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學(xué)生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復(fù)習(xí)課分以下四部分。

  1、先從自然數(shù)入手,由自然數(shù)的概念讓學(xué)生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學(xué)生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。

  2、由偶數(shù)都是2的倍數(shù),復(fù)習(xí)2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學(xué)生邊復(fù)習(xí)老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學(xué)生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學(xué)生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的`關(guān)系,加深了學(xué)生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認識。

  3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復(fù)習(xí)什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學(xué)生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學(xué)生板演,教師巡視。指出錯誤。

  4、帶領(lǐng)學(xué)生一起做練習(xí),讓學(xué)生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性、趣味性。

  不足之處是我缺乏個性化的語言評價激活學(xué)生的情感,以后需多努力。

  因數(shù)和倍數(shù)教學(xué)反思 篇30

  《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時,我首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作到直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)生很容易接受,再通過學(xué)生自己舉例和交流,進一步加深對倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯的。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點。教學(xué)時,我先讓學(xué)生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的`方法。對于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時間也比較少。

  對于找一個數(shù)的因數(shù),學(xué)生最容易犯的錯誤就是漏找,即找不全。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點。

【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

因數(shù)和倍數(shù)教案05-29

《因數(shù)和倍數(shù)》教學(xué)設(shè)計(通用15篇)06-15

因數(shù)和倍數(shù)的教學(xué)設(shè)計(通用7篇)06-11

倍數(shù)和因數(shù)練習(xí)題09-19

《公倍數(shù)、最小公倍數(shù)》教學(xué)設(shè)計和反思10-26

五年級下冊《因數(shù)和倍數(shù)》教學(xué)設(shè)計(通用9篇)06-14

小學(xué)四年級數(shù)學(xué)倍數(shù)和因數(shù)教案設(shè)計06-14

五年級數(shù)學(xué)下冊因數(shù)與倍數(shù)競賽試卷03-24

五年數(shù)學(xué)下冊第二單元因數(shù)與倍數(shù)練習(xí)題06-03

《分子和原子》的教學(xué)設(shè)計和反思09-02