亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教學(xué)計劃

高二數(shù)學(xué)教學(xué)計劃

時間:2024-08-02 10:18:00 教學(xué)計劃 我要投稿

高二數(shù)學(xué)教學(xué)計劃范文錦集七篇

  光陰的迅速,一眨眼就過去了,又將迎來新的工作,新的挑戰(zhàn),立即行動起來寫一份計劃吧。什么樣的計劃才是有效的呢?以下是小編為大家整理的高二數(shù)學(xué)教學(xué)計劃7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

高二數(shù)學(xué)教學(xué)計劃范文錦集七篇

高二數(shù)學(xué)教學(xué)計劃 篇1

  一.學(xué)情分析

  高二5班共有學(xué)生73人, 8班共有學(xué)生70人。兩個班級都是高二理科班的三類班,大部分學(xué)生基礎(chǔ)不扎實,學(xué)習(xí)興趣不高,甚至很多學(xué)生存在怕數(shù)學(xué)科的心理。但他們還是存在一顆想學(xué)好數(shù)學(xué)的心,也想融入變化多端的數(shù)學(xué)世界,更想在每次考試

  中獨領(lǐng)風(fēng)騷,鑒于此,對他們正確引導(dǎo),教學(xué)中適當(dāng)調(diào)整難度,起點放低點,步子邁小點,還是會有好成績的。

  二.教學(xué)計劃

  1.加強自身學(xué)習(xí)。

 、偌訌娬n本的研讀。教科書是一切教學(xué)的出發(fā)點,同時也是考試

  的歸屬地,任何一個數(shù)學(xué)知識點都會從教科書中找到類型題或者相似題或者其影子。對教科書能否吃透,專研到位,直接決定著教學(xué)知識的全面性和系統(tǒng)性。也就決定著研讀教材的必要性。

 、谒街梢怨ビ。一個人由于生活的環(huán)境,面對的對象,自身知識局限等多方面原因,視野和出發(fā)點都有局限,思考問題和解決問題的廣度和深度都有局限,因此,多閱讀教學(xué)參考類的`書,吸取他人的經(jīng)驗,借鑒他人所長彌補自己所短,對于增強教學(xué)的針對性和精彩性大有裨益。

 、蹚娀n改意識。新課改已經(jīng)全面鋪開,新課改的精神和思想都獨具時代性,前瞻性,科學(xué)性,因此,加強新課改知識的學(xué)習(xí),領(lǐng)悟新課改思想,增強新課改意識,是時代的需要,是發(fā)展的需要。因此,積極參與新課改培訓(xùn),領(lǐng)會新課改精髓,并應(yīng)用于實踐中是當(dāng)前必須要做的,只有這樣,才能使自己的知識新陳代謝。

  ④認(rèn)真參與組內(nèi)備課。珍惜每周一次的集體備課,充分利用好這次集體備課機會,從同行們那里學(xué)習(xí)到自己缺乏或者不擅長的東西,并積極實施好組內(nèi)的各項安排,落實好課時要求。

 、菰鰪娐犝n意識。按照學(xué)校的要求,積極參加新課改年級的課堂聽課活動,聽取授課教師的點評,發(fā)現(xiàn)亮點,記錄亮點,積累亮點,點亮亮點。

  2.抓好課堂教學(xué)主戰(zhàn)場,激發(fā)師生學(xué)習(xí)數(shù)學(xué)熱情。

 、偌訌娦抡n情景創(chuàng)設(shè),激發(fā)學(xué)生學(xué)習(xí)熱情。每一節(jié)新課的開展,都有其現(xiàn)實意義,有其價值所在,有其趣味性,充分挖掘好這方面知識,可起到一個良好的開端作用。

 、诰x精講例題。對于學(xué)生自己學(xué)得會的,不講,對于學(xué)生討論后可以解決的,給以適當(dāng)點撥,對于學(xué)生在老師引導(dǎo)下完成的,要慢慢講,細(xì)細(xì)的講,爭取每個學(xué)生都聽得進(jìn),聽得懂,學(xué)得會。對于超越學(xué)生承受能力的,一概不講。

 、劬牟贾谜n后作業(yè)。

  課后作業(yè)是課堂教學(xué)的反饋,作業(yè)質(zhì)量的高低,一定層面可以反映教學(xué)效果的高低,因此,作業(yè)的布置需要科學(xué)化,分層化,多樣化,且知識點具有全面性。

  3.做好課后輔導(dǎo)工作。

 、倮猛碜粤(xí),充分給以每個學(xué)生耐心、細(xì)心、全面的輔導(dǎo)。讓學(xué)生積累的問題得到徹底解決。

 、诶米粤(xí)課時間,尋找需要幫助的學(xué)生進(jìn)行輔導(dǎo),公式背不出來的,抓背公式,不交作業(yè)的,責(zé)令補交作業(yè)。

  4.做好作業(yè)、考試反饋工作。

  學(xué)生認(rèn)真完成作業(yè)和考卷,老師進(jìn)行批改,總結(jié)共性問題,發(fā)現(xiàn)個性問題,有針對性的給以反饋,及時消除困惑。

  5.規(guī)范作答,養(yǎng)成良好習(xí)慣。

  現(xiàn)在學(xué)生的數(shù)學(xué)答卷,條理不清晰,邏輯混亂,因果顛倒,這是基礎(chǔ)不扎實的表現(xiàn),更是一種思維的缺陷。因此,現(xiàn)階段抓好規(guī)范答題,有助于學(xué)生良好數(shù)學(xué)思維的養(yǎng)成,避免將來高考失分和日后生活的凌亂。

  6.培養(yǎng)學(xué)生的數(shù)學(xué)興趣,普及數(shù)學(xué)價值規(guī)律的應(yīng)用。

  興趣是最好的老師。數(shù)學(xué)難,數(shù)學(xué)煩,難在何處,煩在何方?找到原因,對癥下藥,通過課堂,移植中外數(shù)學(xué)趣味知識,讓學(xué)生體會到數(shù)學(xué)的價值所在,通過多媒體,降低數(shù)學(xué)思維難度等等都是提高學(xué)生興趣的好方法。

  以上是這個學(xué)期的教學(xué)工作計劃,在實施過程中,將及時作出調(diào)整,以期達(dá)到教與學(xué)的最佳效果。

高二數(shù)學(xué)教學(xué)計劃 篇2

  (1)知識目標(biāo):

  1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標(biāo):

  1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

  2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強學(xué)生用數(shù)學(xué)的意識.

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點.難點

  (1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

  3.教學(xué)過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  [引導(dǎo)] 畫圖建系

  [學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

  解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學(xué)生活動] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)M(x,y)是圓上任意一點,根據(jù)定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}

  由兩點間的距離公式,點M適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  I.直接應(yīng)用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點 ,圓心在點 .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  II.靈活應(yīng)用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學(xué)生活動]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .

  III.實際應(yīng)用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實際問題情境]

  (四)反饋訓(xùn)練(形成方法)

  問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

  (五)小結(jié)反思(拓展引申)

  1.課堂小結(jié):

  (1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:

  (2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法

  (3) 已知圓的方程是 ,經(jīng)過圓上一點 的切線的.方程是:

  (4) 求解應(yīng)用問題的一般方法

  2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4

  (B)思維拓展型作業(yè):

  試推導(dǎo)過圓 上一點 的切線方程.

  3.激發(fā)新疑:

  問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2.方程: 的曲線是什么圖形?

  教學(xué)設(shè)計說明

  圓是學(xué)生比較熟悉的曲線,初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實際問題中的應(yīng)用,增強學(xué)生用數(shù)學(xué)的意識。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計不但突出了重點,更使難點的突破水到渠成.

  本節(jié)課的設(shè)計了五個環(huán)節(jié),以問題為紐帶,以探究活動為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力。

高二數(shù)學(xué)教學(xué)計劃 篇3

  本章是高考命題的主體內(nèi)容之一,應(yīng)切實進(jìn)行全面、深入地復(fù)習(xí),并在此基礎(chǔ)上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數(shù)列計算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項公式、前 項和公式及其性質(zhì)熟練地進(jìn)行計算,是高考命題重點考查的內(nèi)容.(3)解答有關(guān)數(shù)列問題時,經(jīng)常要運用各種數(shù)學(xué)思想.善于使用各種數(shù)學(xué)思想解答數(shù)列題,是我們復(fù)習(xí)應(yīng)達(dá)到的目標(biāo). ①函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.

 、诜诸愑懻撍枷耄河玫缺葦(shù)列求和公式應(yīng)分為 及 ;已知 求 時,也要進(jìn)行分類;

 、壅w思想:在解數(shù)列問題時,應(yīng)注意擺脫呆板使用公式求解的思維定勢,運用整

  體思想求解.

  (4)在解答有關(guān)的數(shù)列應(yīng)用題時,要認(rèn)真地進(jìn)行分析,將實際問題抽象化,轉(zhuǎn)化為數(shù)學(xué)問題,再利用有關(guān)數(shù)列知識和方法來解決.解答此類應(yīng)用題是數(shù)學(xué)能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關(guān)的等比數(shù)列的第幾項不要弄錯.

  一、基本概念:

  1、 數(shù)列的定義及表示方法:

  2、 數(shù)列的項與項數(shù):

  3、 有窮數(shù)列與無窮數(shù)列:

  4、 遞增(減)、擺動、循環(huán)數(shù)列:

  5、 數(shù)列的通項公式an:

  6、 數(shù)列的前n項和公式Sn:

  7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):

  8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):

  二、基本公式:

  9、一般數(shù)列的通項an與前n項和Sn的`關(guān)系:an=

  10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。

  11、等差數(shù)列的前n項和公式:Sn= Sn= Sn=

  當(dāng)d0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a10),Sn=na1是關(guān)于n的正比例式。

  12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k

  (其中a1為首項、ak為已知的第k項,an0)

  13、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);

  當(dāng)q1時,Sn= Sn=

  三、有關(guān)等差、等比數(shù)列的結(jié)論

  14、等差數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數(shù)列。

  15、等差數(shù)列中,若m+n=p+q,則

  16、等比數(shù)列中,若m+n=p+q,則

  17、等比數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數(shù)列。

  18、兩個等差數(shù)列與的和差的數(shù)列、仍為等差數(shù)列。

  19、兩個等比數(shù)列與的積、商、倒數(shù)組成的數(shù)列

  、 、 仍為等比數(shù)列。

  20、等差數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。

  21、等比數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。

  22、三個數(shù)成等差的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  23、三個數(shù)成等比的設(shè)法:a/q,a,aq;

  四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3

  24、為等差數(shù)列,則 (c0)是等比數(shù)列。

  25、(bn0)是等比數(shù)列,則 (c0且c 1) 是等差數(shù)列。

  四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。

  26、分組法求數(shù)列的和:如an=2n+3n

  27、錯位相減法求和:如an=(2n-1)2n

  28、裂項法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求數(shù)列的最大、最小項的方法:

 、 an+1-an= 如an= -2n2+29n-3

 、 an=f(n) 研究函數(shù)f(n)的增減性

  31、在等差數(shù)列 中,有關(guān)Sn 的最值問題常用鄰項變號法求解:

  (1)當(dāng) 0時,滿足 的項數(shù)m使得 取最大值.

  (2)當(dāng) 0時,滿足 的項數(shù)m使得 取最小值。

  在解含絕對值的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應(yīng)用。

  以上就是高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)數(shù)列的所有內(nèi)容,希望對大家有所幫助!

高二數(shù)學(xué)教學(xué)計劃 篇4

  一、教材依據(jù)

  本節(jié)課是湘教版數(shù)學(xué)(必修三)第二章《解析幾何初步》第二節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。

  二、教材分析

  直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題——求直線方程問題。在引入,過程中要讓學(xué)生弄清直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

  在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

  三、教學(xué)目標(biāo)

  知識與技能:(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

  (2)能正確利用直線的點斜式、斜截式公式求直線方程。

  (3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。

  過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生通過對比理解“截距”與“距離”的區(qū)別。

  情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學(xué)生能用聯(lián)系的觀點看問題。

  四、教學(xué)重點

  重點:直線的點斜式方程和斜截式方程。

  五、教學(xué)難點

  難點:直線的點斜式方程和斜截式方程的應(yīng)用。

  要點:運用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

  六、教學(xué)準(zhǔn)備

  1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

  創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性學(xué)習(xí)活動。

  2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的.思想;學(xué)生要學(xué)會用“數(shù)形結(jié)合”的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

  ①.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達(dá)能力。

  ②.分組討論。

  七、教學(xué)過程

  問 題

  師生活動

  設(shè)計意圖

  1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件?

  學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標(biāo) 滿足的關(guān)系式。

  使學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。

  2、直線 經(jīng)過點 ,且斜率為 。設(shè)點 是直線 上的任意一點,請建立 與 之間的關(guān)系。

  學(xué)生根據(jù)斜率公式,可以得到,當(dāng) 時, ,即

  (1)

  教師對基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個學(xué)生都能推導(dǎo)出這個方程。

  培養(yǎng)學(xué)生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標(biāo) 滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。

  3、(1)過點 ,斜率是 的直線 上的點,其坐標(biāo)都滿足方程(1)嗎?

  學(xué)生驗證,教師引導(dǎo)。

  使學(xué)生了解方程為直線方程必須滿兩個條件。

  (2)坐標(biāo)滿足方程(1)的點都在經(jīng)過 ,斜率為 的直線 上嗎?

  學(xué)生驗證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式.

  使學(xué)生了解方程為直線方程必須滿兩個條件。

  4、直線的點斜式方程能否表示坐標(biāo)平面上的所有直線呢?

  學(xué)生分組互相討論,然后說明理由。

  使學(xué)生理解直線的點斜式方程的適用范圍。

  5、(1) 軸所在直線的方程是什么? 軸所在直線的方程是什么?

  (2)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?

  (3)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?

  教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。

  進(jìn)一步使學(xué)生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。

  6、例2、例4的教學(xué)。

  教師引導(dǎo)學(xué)生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。

  學(xué)會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。

  7、例3的教學(xué)。

  求經(jīng)過點 ,斜率為 的直線 的方程。

  學(xué)生獨立求出直線 的方程:

  (2)

  在此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。

  引入斜截式方程,讓學(xué)生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。

  8、觀察方程 ,它的形式具有什么特點?

  學(xué)生討論,教師及時給予評價。

  深入理解和掌握斜截式方程的特點?

  9、直線 在 軸上的截距是什么?

  學(xué)生思考回答,教師評價。

  使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。

  10、你如何從直線方程的角度認(rèn)識一次函數(shù) ?一次函數(shù)中 和 的幾何意義是什么?你能說出一次函數(shù) 圖象的特點嗎?

  學(xué)生思考、討論,教師評價、歸納概括。

  體會直線的斜截式方程與一次函數(shù)的關(guān)系.

  11、課堂練習(xí)第65頁練習(xí)第1,2,3題。

  學(xué)生獨立完成,教師檢查反饋。

  鞏固本節(jié)課所學(xué)過的知識。

  12、小結(jié)

  教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?

  使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認(rèn)識,了解知識的來龍去脈。

  13、布置作業(yè):第77頁第5題

  學(xué)生課后獨立完成。

  鞏固深化

  八、教學(xué)反思

  直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。

  本節(jié)課的基本題形:

  1、已知直線上一點及直線的傾斜角,求直線的方程并作圖;

  2、已知直線上兩點,求直線的方程并作圖。教學(xué)時應(yīng)注意讓學(xué)生明確直線的傾斜角與斜率的關(guān)系,掌握過兩點的直線的斜率公式,訓(xùn)練學(xué)生求直線方程的書寫格式及直線的規(guī)范作圖。

高二數(shù)學(xué)教學(xué)計劃 篇5

  教學(xué)目標(biāo):

  1. 知識與技能目標(biāo):

  (1)了解中國古代數(shù)學(xué)中求兩個正整數(shù)最大公約數(shù)的算法以及割圓術(shù)的算法;

  (2)通過對“更相減損之術(shù)”及“割圓術(shù)”的學(xué)習(xí),更好的理解將要解決的問題“算法化”

  的思維方法,并注意理解推導(dǎo)“割圓術(shù)”的操作步驟。

  2. 過程與方法目標(biāo):

  (1)改變解決問題的思路,要將抽象的數(shù)學(xué)思維轉(zhuǎn)變?yōu)榫唧w的步驟化的思維方法,提高邏

  輯思維能力;

  (2)學(xué)會借助實例分析,探究數(shù)學(xué)問題。

  3. 情感與價值目標(biāo):

  (1)通過學(xué)生的主動參與,師生,生生的合作交流,提高學(xué)生興趣,激發(fā)其求知欲,培養(yǎng)探索精神;

  (2)體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn),增強愛國主義情懷。

  教學(xué)重點與難點:

  重點:了解“更相減損之術(shù)”及“割圓術(shù)”的`算法。

  難點:體會算法案例中蘊含的算法思想,利用它解決具體問題。

  教學(xué)方法:

  通過典型實例,使學(xué)生經(jīng)歷算法設(shè)計的全過程,在解決具體問題的過程中學(xué)習(xí)一些基本邏輯

  結(jié)構(gòu),學(xué)會有條理地思考問題、表達(dá)算法,并能將解決問題的過程整理成程序框圖。

  教學(xué)過程:

  教學(xué)

  環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖

  創(chuàng)設(shè) 情境

  引入新課 引導(dǎo)學(xué)生回顧

  人們在長期的生活,生產(chǎn)和勞動過程中,創(chuàng)造了整數(shù),分?jǐn)?shù),小數(shù),正負(fù)數(shù)及其計算,以及無限逼近任一實數(shù)的方法,在代數(shù)學(xué),幾何學(xué)方面,我國在宋,元之前也都處于世界的前列。我們在小學(xué),中學(xué)學(xué)到的算術(shù),代數(shù),從記數(shù)到多元一次聯(lián)立方程的求根方法,都是我國古代數(shù)學(xué)家最先創(chuàng)造的。更為重要的是我國古代數(shù)學(xué)的發(fā)展有著自己鮮明的特色,也就是“寓理于算”,即把解決的問題“算法化”。本章的內(nèi)容是算法,特別是在中國古代也有著很多算法案例,我們來看一下并且進(jìn)一步體會“算法”的概念。

  教師引導(dǎo),學(xué)生回顧。

  教師啟發(fā)學(xué)生回憶小學(xué)初中時所學(xué)算術(shù)代數(shù)知識,共同創(chuàng)設(shè)情景,引入新課。

  通過對以往所學(xué)數(shù)學(xué)知識的回顧,使學(xué)生理清知識脈絡(luò),并且向?qū)W生指明,我國古代數(shù)學(xué)的發(fā)展“寓理于算”,不同于西方數(shù)學(xué),在今天看仍然有很大的優(yōu)越性,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn),增強愛國主義情懷。

  閱讀課本 探究新知

  1. 求兩個正整數(shù)最大公約數(shù)的算法

  學(xué)生通常會用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公約數(shù):

  例1:求78和36的最大公約數(shù)

  (1) 利用輾轉(zhuǎn)相除法

  步驟:

  計算出78 36的余數(shù)6,再將前面的除數(shù)36作為新的被除數(shù),36 6=6,余數(shù)為0,則此時的除數(shù)即為78和36的最大公約數(shù)。

  理論依據(jù): ,得 與 有相同的公約數(shù)

  (2) 更相減損之術(shù)

  指導(dǎo)閱讀課本P ----P ,總結(jié)步驟

  步驟:

  以兩數(shù)中較大的數(shù)減去較小的數(shù),即78-36=42;以差數(shù)42和較小的數(shù)36構(gòu)成新的一對數(shù),對這一對數(shù)再用大數(shù)減去小數(shù),即42-36=6,再以差數(shù)6和較小的數(shù)36構(gòu)成新的一對數(shù),對這一對數(shù)再用大數(shù)減去小數(shù),即36-6=30,繼續(xù)這一過程,直到產(chǎn)生一對相等的數(shù),這個數(shù)就是最大公約數(shù)

  即,理論依據(jù):由 ,得 與 有相同的公約數(shù)

  算法: 輸入兩個正數(shù) ;

  如果 ,則執(zhí)行 ,否則轉(zhuǎn)到 ;

  將 的值賦予 ;

  若 ,則把 賦予 ,把 賦予 ,否則把 賦予 ,重新執(zhí)行 ;

  輸出最大公約數(shù)

  程序:

  a=input(“a=”)

  b=input(“b=”)

  while a<>b

  if a>=b

  a=a-b;

  else

  b=b-a

  end

  end

  print(%io(2),a,b)

  學(xué)生閱讀課本內(nèi)容,分析研究,獨立的解決問題。

  教師巡視,加強對學(xué)生的個別指導(dǎo)。

  由學(xué)生回答求最大公約數(shù)的兩種方法,簡要說明其步驟,并能說出其理論依據(jù)。

  由學(xué)生寫出更相減損法和輾轉(zhuǎn)相除法的算法,并編出簡單程序。

  教師將兩種算法同時顯示在屏幕上,以方便學(xué)生對比。

  教師將程序顯示于屏幕上,使學(xué)生加以了解。 數(shù)學(xué)教學(xué)要有學(xué)生根據(jù)自己的經(jīng)驗,用自己的思維方式把要學(xué)的知識重新創(chuàng)造出來。這種再創(chuàng)造積累和發(fā)展到一定程度,就有可能發(fā)生質(zhì)的飛躍。在教學(xué)中應(yīng)創(chuàng)造自主探索與合作交流的學(xué)習(xí)環(huán)境,讓學(xué)生有充分的時間和空間去觀察,分析,動手實踐,從而主動發(fā)現(xiàn)和創(chuàng)造所學(xué)的數(shù)學(xué)知識。

  求兩個正整數(shù)的最大公約數(shù)是本節(jié)課的一個重點,用學(xué)生非常熟悉的問題為載體來講解算法的有關(guān)知識,,強調(diào)了提供典型實例,使學(xué)生經(jīng)歷算法設(shè)計的全過程,在解決具體問題的過程中學(xué)習(xí)一些基本邏輯結(jié)構(gòu),學(xué)會有條理地思考問題、表達(dá)算法,并能將解決問題的過程整理成程序框圖。為了能在計算機上實現(xiàn),還適當(dāng)展示了將自然語言或程序框圖翻譯成計算機語言的內(nèi)容?偟膩碚f,不追求形式上的嚴(yán)謹(jǐn),通過案例引導(dǎo)學(xué)生理解相應(yīng)內(nèi)容所反映的數(shù)學(xué)思想與數(shù)學(xué)方法。

高二數(shù)學(xué)教學(xué)計劃 篇6

  一、目標(biāo)要求

  1.深入鉆練教材,在借鑒她校課件基礎(chǔ)上,結(jié)合所教學(xué)生實際,確定好每節(jié)課所教內(nèi)容,及所采用的教學(xué)手段、方法。

  2.本期還要幫助學(xué)生搞好《數(shù)學(xué)》必修內(nèi)容的復(fù)習(xí),一是為學(xué)生學(xué)業(yè)水平檢測作準(zhǔn)備,二是為高三復(fù)習(xí)打基礎(chǔ)。

  3.本期的專題選講務(wù)求實效。

  4.繼續(xù)培養(yǎng)學(xué)的學(xué)習(xí)興趣,幫助學(xué)生解決好學(xué)習(xí)教學(xué)中的困難,提高學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力。

  5.本期重點培養(yǎng)和提升學(xué)生的抽象思維、概括、歸納、整理、類比、相互轉(zhuǎn)化、數(shù)形結(jié)合等能力,提高學(xué)生解題能力。

  二、教學(xué)措施:

  1、認(rèn)真落實,搞好集體備課。每周至少進(jìn)行一次集體備課,每位老師都要提前一周進(jìn)行單元式的備課,集體備課時,由一名老師作主要發(fā)言人,對下一周的教材內(nèi)容作分析,然后大家研究討論其中的`重點、難點、教學(xué)方法等。在星期一的集合備課中,主要是對上周備課中的情況作補充。每次備課都要用一定的時間交流一下前一段的教學(xué)情況,進(jìn)度、學(xué)生掌握情況等。

  2、詳細(xì)計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料是《高中數(shù)學(xué)新新學(xué)案》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。每周以內(nèi)容滾動式編一份練習(xí)試卷,星期五發(fā)給學(xué)生帶回家完成,星期一交,老師要進(jìn)行批改,存在的普遍性問題最好安排時間講評。試題量控制為10道選擇題(4舊6新)、4道填空題(1舊3新)、4道解答題。

  3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。本學(xué)期第二課堂與數(shù)學(xué)競賽準(zhǔn)備班繼續(xù)分開進(jìn)行輔導(dǎo)。平常意義上的第二課堂輔導(dǎo)學(xué)生,主要是以興趣班的形式,以復(fù)習(xí)鞏固課堂教學(xué)的同步內(nèi)容為主,一般只選用常規(guī)題為例題和練習(xí),難度低于高考接近高考,用專題講授為主要形式開展輔導(dǎo)工作。

  4、加強輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要,所以每位老師必須重視搞好輔導(dǎo)工作。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。

  總結(jié):以上就是下學(xué)期高二必修數(shù)學(xué)教學(xué)計劃,希望對您的教學(xué)有所幫助。

高二數(shù)學(xué)教學(xué)計劃 篇7

  這學(xué)期對于我來說,是一個挑戰(zhàn),因為本學(xué)期我接手了兩個理科班。以前我?guī)У氖冀K是文科班,對于文科班的學(xué)生的情況比較理解,但對于理科班來說,我不知道他們對學(xué)習(xí)會有怎樣的想法與做法。高二七班與八班在人數(shù)上基本一致,但通過我的了解,兩班還是有一定的差距:七班學(xué)生活潑且聰明的學(xué)生也大有人在,但是不學(xué)習(xí)的比較多,甚至有些學(xué)生已經(jīng)徹底放棄了;八班的學(xué)生比較老實些,每個人都在認(rèn)真學(xué),但是數(shù)學(xué)成績沒有七班那么突出,而且學(xué)生在課堂上表現(xiàn)的也不是很積極。針對這兩個陌生的理科班,本學(xué)習(xí)我制定了如下的教學(xué)計劃:

  一、指導(dǎo)思想

  在學(xué)校、數(shù)學(xué)組的領(lǐng)導(dǎo)下,嚴(yán)格執(zhí)行學(xué)校的各項教育教學(xué)制度和要求,認(rèn)真完成各項任務(wù),嚴(yán)格執(zhí)行“三規(guī)”、“五嚴(yán)”。利用有限的時間,使學(xué)生在獲得所必須的基本數(shù)學(xué)知識和技能的同時,在數(shù)學(xué)能力方面能有所提高,為20xx年的高考做準(zhǔn)備,為學(xué)生今后的發(fā)展打下堅實的數(shù)學(xué)基礎(chǔ)。

  二、教學(xué)措施

  1、以能力為中心,以基礎(chǔ)為依托,調(diào)整學(xué)生的學(xué)習(xí)習(xí)慣,調(diào)動學(xué)生學(xué)習(xí)的積極性,讓學(xué)生多動手、多動腦,培養(yǎng)學(xué)生的運算能力、邏輯思維能力、運用數(shù)學(xué)思想方法分析問題解決問題的能力。精講多練,一般地,每一節(jié)課讓學(xué)生練習(xí)20分鐘左右,充分發(fā)揮學(xué)生的主體作用。

  2、堅持每一個教學(xué)內(nèi)容集體研究,充分發(fā)揮備課組集體的力量,精心備好每一節(jié)課,努力提高上課效率。調(diào)整教學(xué)方法,采用新的教學(xué)模式。教學(xué)基本模式為:

  基礎(chǔ)練習(xí)→典型例題→作業(yè)→課后檢查

  (1)基礎(chǔ)練習(xí):一般5道題,主要復(fù)習(xí)基礎(chǔ)知識,基本方法。要求所有的學(xué)生都過關(guān),所有的學(xué)生都能做完。

 。2)典型例題:一般4道題,例1為基礎(chǔ)題,要直接運用課前練習(xí)的基礎(chǔ)知識、基本方法,由學(xué)生上臺演練。例2思路要廣,讓有生能想到多種方法,讓中等生能想到1—2種方法,讓中下生讓能想到1種方法。例3題目要新,能轉(zhuǎn)化為前面的典型類型求解。例4為綜合題,培養(yǎng)學(xué)生運用數(shù)學(xué)思想方法分析問題解決問題的能力。

 。3)作業(yè):本節(jié)課的基礎(chǔ)問題,典型問題及下一節(jié)課的預(yù)習(xí)題。

 。4)課后檢查;重點檢查改錯本及復(fù)習(xí)資料上的作業(yè)。

  3、腳踏實地做好落實工作。當(dāng)日內(nèi)容,當(dāng)日消化,加強每天、每月過關(guān)練習(xí)的檢查與落實。堅持每周一周練,每章一章考。通過周練重點突破一些重點、難點,章考試一章的查漏補缺,章考后對一章的不足之處進(jìn)行重點講評。

  4、周練與章考,切實把握試題的選取,切實把握高考的脈搏,注重基礎(chǔ)知識的考查,注重能力的考查,注意思維的層次性(即解法的多樣性),適時推出一些新題,加強應(yīng)用題考察的力度。每一次考試試題堅持集體研究,努力提高考試的效率。

  5.注重對所選例題和練習(xí)題的把握:

 。1)注重對“四基五能力”的考察把握,貼近課本;

 。2)注重學(xué)科內(nèi)容的'聯(lián)系與綜合;

 。3)注重數(shù)學(xué)思想方法、通性、通法,淡化特殊技巧;

 。4)注重能力立意,以考察學(xué)生邏輯思維能力為核心,全面考察能力;

 。5)注重考查學(xué)生的創(chuàng)新意識和實踐能力,設(shè)計應(yīng)用性、探索性的問題;

 。6)試題體現(xiàn)層次性、基礎(chǔ)性,梯度安排合理,堅持多角度,多層次的考察,有效地檢測對數(shù)學(xué)知識中所蘊含的數(shù)學(xué)思想和方法掌握的程度。

  (7)精心選做基礎(chǔ)訓(xùn)練題目,做到不偏、不漏、不怪,即不偏離教材內(nèi)容和考試說明的范圍和要求。不選做那些有孤僻怪誕特點、內(nèi)容和思路的題目,做到不憑個人喜好選題,不脫離學(xué)生學(xué)習(xí)狀況選題,不超越教學(xué)基本內(nèi)容選題,不大量選做難度較大的題目。

  6.周密計劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學(xué),使學(xué)生在解題探究中提高能力。

  7.多從“貼近教材、貼近學(xué)生、貼近實際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問題,對學(xué)生進(jìn)行有計劃、針對性強的訓(xùn)練,多給學(xué)生鍛煉各種能力的機會,從而達(dá)到提升學(xué)生數(shù)學(xué)綜合能力之目的。不脫離基礎(chǔ)知識來講學(xué)生的能力,基礎(chǔ)扎實的學(xué)生不一定能力強。教學(xué)中不斷地將基礎(chǔ)知識運用于數(shù)學(xué)問題的解決中,努力提高學(xué)生的學(xué)科綜合能力。

  三、對自己的要求——落實教學(xué)的各個環(huán)節(jié)

  1.精心上好每一節(jié)課

  備課時從實際出發(fā),精心設(shè)計每一節(jié)課,備課組分工合作,利用集體智慧制作課件,充分應(yīng)用現(xiàn)代化教育手段為教學(xué)服務(wù),提高四十五分鐘課堂效率。

  2.嚴(yán)格控制測驗,精心制作每一份復(fù)習(xí)資料和練習(xí)

  教學(xué)中配備資料應(yīng)要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。三類練習(xí)(大練習(xí)、限時訓(xùn)練、月考)試題的制作分工落實到每個人(備課組長出月考卷,其他教師出大練習(xí)、限時訓(xùn)練卷),并經(jīng)組長嚴(yán)格把關(guān)方可使用。注重考試質(zhì)量和試卷分析,定期組織備課組教師進(jìn)行學(xué)情分析,發(fā)現(xiàn)問題,尋找對策,及時解決,確保學(xué)生的學(xué)習(xí)積極性不斷提高。

  3.做好作業(yè)批改和加強輔導(dǎo)工作

  我們的工作對象是活生生的對象──學(xué)生,這里需要關(guān)心、幫助及鼓勵。我們要對學(xué)生的學(xué)習(xí)情況做大量的細(xì)致工作,批改作業(yè)、輔導(dǎo)疑難、及時鼓勵等,特別是對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教我們的輔導(dǎo)更為重要。在教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,不僅要給他們解疑難,還要給他們鼓信心、調(diào)動自身的學(xué)習(xí)積極性,幫助他們樹立良好的學(xué)習(xí)態(tài)度,積極主動地去投入學(xué)習(xí),變“要我學(xué)”為“我要學(xué)”。

【高二數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

高二數(shù)學(xué)的教學(xué)計劃09-11

新高二數(shù)學(xué)教學(xué)計劃06-04

高二數(shù)學(xué)春季教學(xué)計劃08-14

高二數(shù)學(xué)教學(xué)計劃安排08-29

高二數(shù)學(xué)教學(xué)計劃12篇08-08

高二數(shù)學(xué)教學(xué)計劃15篇09-22

高二數(shù)學(xué)教學(xué)計劃精選15篇10-28

高二數(shù)學(xué)教學(xué)計劃14篇09-22

高二數(shù)學(xué)教學(xué)計劃(15篇)06-26

高二數(shù)學(xué)教學(xué)計劃(14篇)06-28