亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教學(xué)設(shè)計(jì)

二元一次方程教學(xué)設(shè)計(jì)教案

時(shí)間:2024-09-20 18:48:05 彥澈 教學(xué)設(shè)計(jì) 我要投稿
  • 相關(guān)推薦

二元一次方程教學(xué)設(shè)計(jì)教案(精選12篇)

  作為一名優(yōu)秀的教育工作者,編寫教案是必不可少的,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家收集的二元一次方程教學(xué)設(shè)計(jì)教案,僅供參考,大家一起來看看吧。

二元一次方程教學(xué)設(shè)計(jì)教案(精選12篇)

  一、教學(xué)目標(biāo)

  1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會(huì)辨別一個(gè)方程是不是二元一次方程;

  2、通過探索交流,會(huì)辨別一個(gè)解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  過程與方法目標(biāo):

  經(jīng)歷觀察、比較、猜想、驗(yàn)證等數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)分析問題的能力和數(shù)學(xué)說理能力;

  情感與態(tài)度目標(biāo)

  1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進(jìn)一步培養(yǎng)運(yùn)用類比轉(zhuǎn)化的思想解決問題的能力;

  2、通過對(duì)實(shí)際問題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。

  二、重點(diǎn)、難點(diǎn)

  重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。

  難點(diǎn)

  1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個(gè),但不是任意的兩個(gè)數(shù)是它的解。

  2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

  三、教學(xué)方法與教學(xué)手段

  1、 通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識(shí)二元一次方程,了解二元一次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問題的需要。

  2、 通過觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

  3、 通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。

  四、教學(xué)過程

  創(chuàng)設(shè)情境 導(dǎo)入新課

  1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?

  2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?

  思考:這個(gè)問題中,有幾個(gè)未知數(shù)?能列一元一次方程求解嗎?如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米。如果設(shè)轎車的速度是a千米/時(shí),卡車的速度是b千米/時(shí),你能列出怎樣的方程?

  師生互動(dòng) 探索新知

  1、 發(fā)現(xiàn)新知

  引導(dǎo)學(xué)生觀察所列的方程: 這兩個(gè)方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)(gè)名字嗎?

  根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程? (二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)

  2、 鞏固新知

  判斷下列各式是不是二元一次方程(1) (2) (3) (4)

  3、師生互動(dòng) 再探新知

  (1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)

  (2)你能給二元一次方程的解下一個(gè)定義嗎?(使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。)

  若未知數(shù)設(shè)為,記做 ,若未知數(shù)設(shè)為,記做

  4、 檢驗(yàn)新知

  (1)檢驗(yàn)下列各組數(shù)是不是方程 的解:(學(xué)生感悟二元一次方程解的不唯一性)

  (2)你能寫出方程x-y=1的一個(gè)解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)

  5、自我挑戰(zhàn) 三探新知

  有3張寫有相同數(shù)字的藍(lán)卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x ,黃卡上的數(shù)字為y ,根據(jù)題意列方程。

  請(qǐng)找出這個(gè)方程的一個(gè)解,并寫出你得到這個(gè)解的過程。

  學(xué)生在解二元一次方程的過程中體驗(yàn)和了解二元一次方程解的不唯一性。

  五、 總結(jié)

  比較一元一次方程和二元一次方程的相同點(diǎn)和不同點(diǎn)

  相同點(diǎn): 方程兩邊都是整式,含有未知數(shù)的項(xiàng)的次數(shù)都是一次。

  如果一個(gè)方程含有兩個(gè)未知數(shù),并且所含未知項(xiàng)都為1次方,那么這個(gè)整式方程就叫做二元一次方程,有無窮個(gè)解,若加條件限定有有限個(gè)解。

  二元一次方程教學(xué)設(shè)計(jì)教案 1

  【摘要】

  初三數(shù)學(xué)二元一次方程教案實(shí)錄本文通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【教學(xué)目標(biāo)】

  【知識(shí)目標(biāo)】

  了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。

  【能力目標(biāo)】

  通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

  【情感目標(biāo)】

  通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【重點(diǎn)】

  二元一次方程組的含義

  【難點(diǎn)】

  判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【教學(xué)過程】

  一、引入、實(shí)物投影

  1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:累死我了,小馬說:你還累,這么大的個(gè),才比我多馱2個(gè)老牛氣不過地說:哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!,小馬天真而不信地說:真的?!同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?

  2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)

  這個(gè)問題由于涉及到老牛和小馬的馱包裹的'兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)

  師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少? (含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)

  師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

  注意:這個(gè)定義有兩個(gè)地方要注意①、含有兩個(gè)未知數(shù),②、含的次數(shù)是一次

  練習(xí):(投影)

  下列方程有哪些是+2y=1 xy+x=1 3x-=5 x2-2=3x

  xy=1 2x(y+1)=c 2x-y=1 x+y=0

  二、議一議、

  師:上面的方程中x-y=2的x含義相同嗎?

  師:

  x-y=2

  x+1=2(y-1)

  2x+3y=3 5x+3y=8

  x-3y=0 x+y=8

  1、 x=6,y=22、 X=5,y=3 x=6 x=5

  y=2 y=3

  x=5 y=3

  1、 2、 3、

  二元一次方程教學(xué)設(shè)計(jì)教案 2

  第1、2課時(shí)(代入法解二元一次方程組)

  學(xué)習(xí)目標(biāo):

  重點(diǎn):用代入法解二元一次方程組

  難點(diǎn):用代入法解二元一次方程組

  課前預(yù)習(xí):

  一、閱讀教材P96-P98的內(nèi)容

  二、獨(dú)立思考:

  1、滿足方程組 的x的值是-1,則方程組的解是_____________.

  2、用代入法解方程組 比較容易的變形是( )、

  A、由①得 B、由①得

  C、由得 D、則得

  3、用代入消元法解方程 以下各式正確的是( )

  A、 B、

  C、 D、

  4、如果 是二元一次方程,則 的值是多少?

  互動(dòng)教學(xué)過程

  探究一:用代入法解方程組 。

  探究二:用代入法解二元一次方程組的一般步驟:

  步驟 名稱 具體做法 目的

  1 變形 變形為

  2 代入

  3 求一元

  4 求另一元

  5 寫出解

  探究三:根據(jù)市場(chǎng)調(diào)查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產(chǎn)品的銷售數(shù)量(按瓶計(jì)算)比為

  2:5,某廠每天生產(chǎn)這種消毒液22.5噸,這些消毒液應(yīng)該分裝大、小兩種產(chǎn)品各多少瓶?

  自我能力評(píng)估

  一、課堂練習(xí)

  教材P98練習(xí)1、2題,P99練習(xí)第3、4題

  解下列方程組

  (1) (2) (3)

  二、作業(yè)布置

  教材P103習(xí)題8.2第1、2、4、6題。

  三、自我檢驗(yàn)

  (一)填空題

  1、在方程 中,若用x表示y,則y=__________________,若用y表示x,則x=____________.

  2、用代入法解方程組 較簡單的解法步驟為:先把方程______變?yōu)開________________,再代入方程________,求得_______的值,然后再求_________的值。

  3、二元一次方程組 的解為_______________。

  4、若 是方程組 的解,則m=_________,n=__________。

  5、在方程 中,若x與y互為相反數(shù),則x=_______,y=___________。

  6、從方程組 中消去m,得x與y的關(guān)系式為_____________________。

  7、如果方程組 的解是方程 的一個(gè)解,則m=________________。

  8、用代入法解方程組 由得到用x的式子表示y是:_______________________。

  (二)選擇題

  1、用代入法解方程組 使得代入后化簡比較容易的變形是( )

  A、由得 B、由得 C、由得 D、由得

  2、用代入法解方程組 時(shí),代入正確的是( )

  A、 B、 C、 D、

  3、解方程組 的最佳方法是( )

  A、由得 再代入 B、由得 再代入

  C、由得 再代入 D、由得 再代入

  4、方程 的一個(gè)解與方程組 的解相同,由m等于( )

  A、4 B、3 C、2 D、1

  5、如果 是方程組 的解,那 之間的關(guān)系是( )

  A、 B、 C、 D、

  6、在式子 中,當(dāng) 時(shí),其值為3,當(dāng) 時(shí),其值是4,當(dāng) 時(shí),其值為( )

  A、 B、 C、 D、

  7、某校八年級(jí)學(xué)生在會(huì)議室開會(huì),若每排坐12人,則有11人無處從,若每排從14人,則余1人獨(dú)從一排,則這個(gè)年級(jí)的學(xué)生總數(shù)為( )

  A、133 B、144 C、155 D、166

  (三)解答題

  1、用代入消元法解下列方程組:

  (1) (2) (3)

  2、已知方程組 的`解中x與y互為相反數(shù),求m的值。

  3、已知方程組 的解是方程 的一個(gè)解,求a的值。

  4、已知方程組 與方程組 有相同的解,求a、b的值。

  5、解下列方程組的過程中,是否有錯(cuò)誤,如有錯(cuò)誤,請(qǐng)指出來。

  解方程組

  解:由①得

  把代入中,

  y是任意數(shù)

  x是任意數(shù)

  因此方程組有無數(shù)個(gè)解

  6、若 求 的值。

  7、一個(gè)兩位數(shù),十位上的數(shù)字比個(gè)位數(shù)字大2,若將十位數(shù)了和個(gè)位數(shù)字交換位置,所得的數(shù)比原數(shù)的 多3,求這個(gè)兩位數(shù)。

  8、甲、乙兩人同解方程組 ,甲正確解得 ,乙因抄錯(cuò)C,解得 ,求A、B、C的值。

  9、已知等式 對(duì)于一切數(shù)都成立,求A、B的值。

  10、根據(jù)有關(guān)信息求解:

  (1)根據(jù)圖中給出的信息,求每件T恤衫和每

  瓶礦泉水的價(jià)格。

  (2)用八塊相同的長方形地磚拼成了一個(gè)大長

  方形,求每塊地磚的長和寬。

  第3、4課時(shí)(加減消元法)

  學(xué)習(xí)目標(biāo):

  1、掌握用加減消元法解二元一次方程組的一般步驟,進(jìn)一步體會(huì)消元的思想。

  2、能根據(jù)二元一次方程組的特點(diǎn)選擇比較容易的方法解題。

  3、能由題意找出相等關(guān)系列出方程組解簡單的實(shí)際問題。

  重點(diǎn):用加減消元法解二元一次方程組

  難點(diǎn):用加減消元法解二元一次方程組

  課前預(yù)習(xí):

  一、閱讀教材P99-P102內(nèi)容

  二、獨(dú)立思考;

  1、用加減消元法解方程組 ,如果要消去x,方法是_______________,得到__________,如果要消去y,方法是________________,得到_____________________。

  2、已知方程 有兩個(gè)解分別是 和 則 =_________, =___________。

  3、解方程組 為了計(jì)算較簡單,最好是( )

  A、①7-②3 B、①-②3 C、①+②3 D、①2-②

  4、已知方程組 ,則 與 的關(guān)系是_____________________。

  5、已知點(diǎn)A( ),點(diǎn)B( )關(guān)于 軸對(duì)稱,則 的值是_____________。

  6、解方程組 比較簡單的方法是_______________。

  7、大數(shù)和小數(shù)相差8,和是32,由大數(shù)是___________,小數(shù)是_______________。

  8、已知方程組 ,則 =__________________。

  互動(dòng)課堂教學(xué)

  探究一:用加減法解方程組 。

  步驟 名稱 具體做法 目的

  1 變形 使方程中某一個(gè)未知數(shù)的系數(shù)相等或變成相反數(shù)的形式。

  2 加減

  3 求一元

  4 求另一元

  5 寫出解

  探究二:用加減消元法解方程組的一般步驟;

  探究三:2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)均工作2小時(shí)共收割小麥3.6公頃,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)均工作5小時(shí)共收割小麥8公頃,1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?

  自我能力評(píng)估

  一、課堂作業(yè):

  1、教材P102練習(xí)第1.2.3題。

  二、作業(yè)布置:

  教材P103習(xí)題8.2第3、5、7、8、9題

  三、自我檢測(cè)

  (一)填空題

  1、解二元一次方程組的基本思想是________,其中常用的方法有______________、______________兩種。

  2、用加減消元法解下列方程組 ,較簡單的消元方法是:將兩方程左右兩邊_________,消去未知數(shù)______。

  3、已知方程組 用加減消元法消去x的方法是_________,用加減法消去y的方法是_______。

  4、方程組 ,可用______________消去未知數(shù)y,也可用___________消去x。

  5、方程 的解是_________________。

  6、用加著消元法解方程時(shí),你認(rèn)為行消哪個(gè)未知數(shù)較簡單,填寫消元的過程,不解:

  (1) ,消元的方法是_______________________.

  (2) ,消元的方法是_________________________.

  7、已知方程組 ,不解方程組,則 =___________, =___________。

  8、 滿足 ,那么 的值是__________________。

  9、已知一個(gè)等腰三角形一腰上的中線把它的周長分為6cm和9cm兩部分,則它的底邊長是____________。

  (二)選擇題

  1、解方程組比較簡單的消元方法是( )

  A、用含y的式子表示x,用代入法 B、加減法

  C、換元法 D、三種方法完全一樣

  2、用加減法解方程組 ,下列解法不正確的是( )

  A、○13-○22,消去x B、○12-○23,消去y

  C、○1(-3)+○22,消去x D、○12-○2(-3),消去y

  3、用加減法解方程組 ,其解題步驟如下:(1)○1+○2得 ;(2)○1-○22得 ,所以原方程組的解為 ,則下列說法正確的是( )

  A、步驟(1)、(2)都不對(duì) B、步驟(1)、(2)都對(duì)

  C、本題不適宜用加減法解 D、加減法不能用兩次

  4、若二元一次方程 有公共解,則m等于( )

  A、-2 B、-1 C、3 D、4

  5、已知方程組 的解為 ,則 的值為( )

  A、4 B、6 C、-6 D、-4

  6、以方程 的解為坐標(biāo)的點(diǎn)P( )一定不在( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  7、如果關(guān)于x、y的二元一次方程組 的解x、y的差是7,那么k的值是( )

  A、-2 B、8 C、0.8 D、-8

  (三)解答題

  1、用加減法解下列方程組:

  (1) (2) (3)

  2、用適合的方法解下列方程組:

  (1) (2) (3)

  3、若方程組 的解滿足 ,求m的值。

  4、已知方程組 中 的系數(shù)已經(jīng)模糊不清,但知道其中表示同一個(gè)數(shù),也表示同一個(gè)數(shù),且 是這個(gè)方程組的解,你能求出原方程組嗎?

  5、已知關(guān)于 有方程組 的解是 ,求 。

  6、解方程組 。

  7、在一本書上寫著方程組 的解是 ,其中y的值被蓋住了,你能求出p的嗎?

  8、已知 , ,求 的值。

  9、如圖,在平面直角坐標(biāo)系中A、B兩點(diǎn)的坐標(biāo)滿足方程

  10、解這個(gè)方程組

  二元一次方程教學(xué)設(shè)計(jì)教案 3

  學(xué)習(xí)目標(biāo):

  1. 使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系

  2. 能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值

  3. 能解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)

  學(xué)習(xí)重點(diǎn):

  1. 用作圖像法求二元一次方程組的近似值

  2. 用解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)

  學(xué)習(xí)難點(diǎn):

  1. 做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近

  2. 解二元一次方程組時(shí)計(jì)算準(zhǔn)確,方法適宜

  學(xué)習(xí)方法:

  先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。

  自主學(xué)習(xí)部分:

  問題1.

 。1)方程x+y=5的解有多少組?寫出其中的幾組解。

 。2)在直角坐標(biāo)系中分別描出以上這些解為坐標(biāo)的點(diǎn),它們?cè)谝淮魏瘮?shù)y=5-x的圖像上嗎?

 。3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的`坐標(biāo)適合方程x+y=5嗎?

 。4)以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=5-x的圖像相同嗎?

 。5)由以上的探究過程,你發(fā)現(xiàn)了什么?

  問題2.(1)在同一個(gè)直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=5-x和y=2x-1的圖像,這兩個(gè)圖像有交點(diǎn)嗎?如果有,寫出交點(diǎn)坐標(biāo)?

 。2)一次函數(shù)y=5-x和y=2x-1的交點(diǎn)坐標(biāo)與方程 組 的解有什么關(guān)系?你能說明理由嗎?

  (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用 法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。

  合作探究:

 。1) 用做圖像的方法解方程組

  (2)用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)

  二元一次方程教學(xué)設(shè)計(jì)教案 4

  一、教材分析

  本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

  二、教學(xué)目標(biāo)

  1.使學(xué)生學(xué)會(huì)用代入消元法解二元一次方程組.

  2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會(huì)化歸思想.

  三、教學(xué)重難點(diǎn)

  1.重點(diǎn):用代入法解二元一次方程組.

  2.難點(diǎn):在“消元”的過程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡便的過程。

  四、教學(xué)過程

 。1)復(fù)習(xí)引入

  在上節(jié)課中我們學(xué)習(xí)了二院一次方程組的有關(guān)概念,并學(xué)習(xí)了二元一次方程組的概念還學(xué)會(huì)判斷一組值是否是二元一次方程組的解的問題,同學(xué)們還記得二元一次方程組和二元一次方程組的解的`概念嗎?追問二元一次方程組既然有解那么它們的解又怎么求呢?

  設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

 。2)探究新知

  此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問題。

  一個(gè)問題是為什么能用一元一次方程解決的實(shí)際問題我們要用二元一次方程組來解決?第二個(gè)問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

  播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

 。3)例題講解

  讓學(xué)生嘗試解答

  設(shè)計(jì)意圖:讓學(xué)生通過例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問題。

  預(yù)想大部分學(xué)生例2會(huì)存在這樣的問題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問題:

 。1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)

  (2)選擇哪個(gè)方程變形比較簡便呢?

  再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,

  讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡便的進(jìn)行運(yùn)算。

  五、課堂小結(jié)

  1.這節(jié)課你學(xué)到了哪些知識(shí)和方法?

  2.你還有什么問題或想法需要和大家交流分享?

  六、課后作業(yè)布置:

  xxx

  七、課后反思

  通過洋蔥視頻輔助教學(xué),使得學(xué)生容易體會(huì)到“消元”思想的滲透,學(xué)生能夠?qū)W會(huì)規(guī)范解題。通過視頻的講解能夠準(zhǔn)確的選擇要變形的方程,如果是傳統(tǒng)的教學(xué)方式可能會(huì)出現(xiàn)很多學(xué)生不理解的地方,但通過洋蔥數(shù)學(xué)短小精辟的視頻講解一下子讓學(xué)生理解透!

  二元一次方程教學(xué)設(shè)計(jì)教案 5

  一.教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.代入消元法解二元一次方程組.

  2.解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想.

  (二)能力訓(xùn)練要求

  1.會(huì)用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想.

  (三)情感與價(jià)值觀要求

  1.在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問題為簡單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心.

  2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.

  二.教學(xué)重點(diǎn)

  1.會(huì)用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想.

  三.教學(xué)難點(diǎn)

  1.消元的思想.

  2.化未知為已知的化歸思想.

  四.教學(xué)方法

  啟發(fā)自主探索相結(jié)合.

  教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.

  五.教具準(zhǔn)備

  投影片兩張:

  第一張:例題(記作7.2 A);

  第二張:問題串(記作7.2 B).

  六.教學(xué)過程

  Ⅰ.提出疑問,引入新課

  [師生共憶]上節(jié)課我們討論過一個(gè)希望工程義演的問題;沒去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?

  [生]在上一節(jié)課的做一做中,我們通過檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個(gè)人和3個(gè)人.

  [師]但是,這個(gè)解是試出來的.我們知道二元一次方程的解有無數(shù)個(gè).難道我們每個(gè)方程組的解都去這樣試?

  [生]太麻煩啦.

  [生]不可能.

  [師]這就需要我們學(xué)習(xí)二元一次方程組的解法.

 、.講授新課

  [師]在七年級(jí)第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過希望工程義演問題,當(dāng)時(shí)是如何解的呢?

  [生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:

  5x+3(8-x)=34

  解得x=5

  將x=5代入8-x=8-5=3

  答:成人去了5個(gè),兒童去了3個(gè).

  [師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

  [生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè).列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè).y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.

  [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程.

  [師]太好了.我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可.如何轉(zhuǎn)化呢?

  [生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.二元化成一元.

  [師]這位同學(xué)很善于思考.他用了我們?cè)跀?shù)學(xué)研究中化未知為已知的化歸思想,從而使問題得到解決.下面我們完整地解一下這個(gè)二元一次方程組.

  解:

  由①得 y=8-x ③

  將③代入②得

  5x+3(8-x)=34

  解得x=5

  把x=5代入③得y=3.

  所以原方程組的解為

  下面我們?cè)囍眠@種方法來解答上一節(jié)的誰的包裹多的問題.

  [師生共析]解二元一次方程組:

  分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.

  解:由①得x=2+y ③

  將③代入②得(2+y)+1=2(y-1)

  解得y=5

  把y=5代入③,得

  x=7.

  所以原方程組的解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹.

  [師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們?cè)賮砜磧蓚(gè)例子.

  出示投影片(7.2 A)

  [例題]解方程組

  (1)

  (2)

  (由學(xué)生自己完成,兩個(gè)同學(xué)板演).

  解:(1)將②代入①,得

  3 +2y=8

  3y+9+4y=16

  7y=7

  y=1

  將y=1代入②,得

  x=2

  所以原方程組的解是

  (2)由②,得x=13-4y ③

  將③代入①,得

  2(13-4y)+3y=16

  -5y=-10

  y=2

  將y=2代入③,得

  x=5

  所以原方程組的解是

  [師]下面我們來討論幾個(gè)問題:

  出示投影片(7.2 B)

  (1)上面解方程組的基本思路是什么?

  (2)主要步驟有哪些?

  (3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?

  (由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過程中的獨(dú)特想法)

  [生]我來回答第一問:解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?

  [生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠蹋阉冃螢橛靡粋(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù).

  第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒有變形的另一個(gè)方程,可得一個(gè)一元一次方程.

  第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.

  第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.

  第五步:用{把原方程組的解表示出來.

  第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立.

  [師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問題也提了出來,很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗(yàn)自己答案正確與否的'習(xí)慣.

  [生]老師,我代表我們組來回答第三個(gè)問題.我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對(duì)值較小的方程變形.但我們也有一個(gè)問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡便,有沒有更簡捷的方法呢?

  [師]這個(gè)問題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過程寫到黑板上來.

  [生]解:由②得2x=y+3 ③

 、蹆蛇呁瑫r(shí)乘以2,得

  4x=2y+6 ④

  由④得2y=4x-6

  把⑤代入①得

  3x+(4x-6)=8

  解得7x=14,x=2

  把x=2代入③得y=1.

  所以原方程組的解為

  [師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將2y整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)科學(xué)的發(fā)明.

 、.隨堂練習(xí)

  課本P192

  1.用代入消元法解下列方程組

  解:(1)

  將①代入②,得

  x+2x=12

  x=4.

  把x=4代入①,得

  y=8

  所以原方程組的解為

  (2)

  將①代入②,得

  4x+3(2x+5)=65

  解得x=5

  把x=5代入①得

  y=15

  所以原方程組的解為

  (3)

  由①,得x=11-y ③

  把③代入②,得

  11-y-y=7

  y=2

  把y=2代入③,得

  x=9

  所以原方程組的解為

  (4)

  由②,得x=3-2y ③

  把③代入①,得

  3(3-2y)-2y=9

  得y=0

  把y=0代入③,得x=3

  所以原方程組的解為

  注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過程統(tǒng)一.

 、.課時(shí)小結(jié)

  這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法.了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉?主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程的解.

 、.課后作業(yè)

  1.課本習(xí)題7.2

  2.解答習(xí)題7.2第3題

 、.活動(dòng)與探究

  已知代數(shù)式x2+px+q,當(dāng)x=-1時(shí),它的值是-5;當(dāng)x=-2時(shí),它的值是4,求p、q的值.

  過程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即

  當(dāng)x=-1時(shí),代數(shù)式的值是-5,得

  (-1)2+(-1)p+q=-5 ①

  當(dāng)x=-2時(shí),代數(shù)式的值是4,得

  (-2)2+(-2)p+q=4 ②

  將①、②兩個(gè)方程整理,并組成方程組

  解方程組,便可解決.

  結(jié)果:由④得q=2p

  把q=2p代入③,得

  -p+2p=-6

  解得p=-6

  把p=-6代入q=2p=-12

  所以p、q的值分別為-6、-12.

  七.板書設(shè)計(jì)

  7.2 解二元一次方程組(一)

  一、希望工程義演

  二、誰的包裹多問題

  三、例題

  四、解方程組的基本思路:消元即二元一元

  五、解二元一次方程組的基本步驟

  二元一次方程教學(xué)設(shè)計(jì)教案 6

  教學(xué)目標(biāo)

  1、認(rèn)識(shí)二元一次方程和二元一次方程組.

  2、了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.

  重點(diǎn)、難點(diǎn)

  重點(diǎn):理解二元一次方程組的解的意義

  難點(diǎn):求二元一次方程的正整數(shù)解

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  什么是一元一次方程?“元”指什么?“次”指什么?

  什么是方程的解?

  設(shè)計(jì)意圖:通過學(xué)生復(fù)習(xí)以前的內(nèi)容,知道用元與次的含義,為這節(jié)課所學(xué)的二元一次方程組奠定基礎(chǔ)。

  二、觀看視頻

  觀看洋蔥視頻關(guān)于二元一次方程組的內(nèi)容,通過熟悉的雞兔同籠問題來引發(fā)思考。

  視頻內(nèi)容

  設(shè)計(jì)意圖:用視頻吸引學(xué)生注意力,引起學(xué)生的認(rèn)知沖突,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過視頻內(nèi)容,學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。

  三、探究新知

  根據(jù)視頻內(nèi)容歸納出二元一次方程的定義:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程.

  把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.

  提問:對(duì)比兩個(gè)方程,你能發(fā)現(xiàn)它們之間的'關(guān)系嗎?

  師生共同總結(jié)二元一次方程組的概念像這樣方程組中有兩個(gè)個(gè)未知數(shù),含有每個(gè)未知數(shù)的項(xiàng)的次數(shù)都是1,并且一共有兩個(gè)方程,像這樣的方程組叫做二元一次方程組.

  探究二元一次方程組的解:

  滿足x+y=10的值有哪些?請(qǐng)?zhí)钊氡碇校?/p>

  使二元一次方程兩邊相等的未知數(shù)的值,叫做二元一次方程的解,記作.

  滿足方程2x+y=16且符合問題的實(shí)際意義的x 、y的值如下表:

  不難發(fā)現(xiàn)x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是說是這兩個(gè)方程的公共解,我們把它們叫做方程組的解。

  歸納二元一次方程組的解的定義:二元一次方程組中的兩個(gè)方程的公共解叫做二元一次方程組的解.

  思考:3x+y=10的解有多少個(gè)?一個(gè)解有幾個(gè)數(shù)?正整數(shù)解有幾個(gè)?

  帶著問題讓學(xué)生觀看洋蔥數(shù)學(xué)視頻二元一次方程組的解

  視頻內(nèi)容

  設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識(shí)的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標(biāo)表示平移觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。

  四、例題講解

  例、若方程2x2m+3+3y3n-7=0是關(guān)于x、y的二元一次方程,求m+n的值。

  例2、暴風(fēng)雨即將來臨,一群螞蟻正忙著搬家.其中有大螞蟻和小螞蟻,已知大小螞蟻總共有1 00只,小螞蟻一次只能搬一粒食物,大螞蟻一次能搬兩粒,一場(chǎng)忙碌過后,洞里的160粒食物剛好一次被安全轉(zhuǎn)移,求大小螞蟻各有幾只?

  例3、

  學(xué)生思考,試著解答,最后共同宣布答案。

  設(shè)計(jì)意圖:在例題講解過程中,讓學(xué)生充分活動(dòng)起來,通過例題探究來進(jìn)行總結(jié),不要讓學(xué)生死記硬背,重點(diǎn)在理解,會(huì)靈活運(yùn)用。

  五、隨堂練習(xí)

  1、下列方程中,是二元一次方程的是( )

  A、3x-2y=4z B、6xy+9=0

  C.+4y=6 D、4x=

  2、下列方程組中,是二元一次方程組的是( )

  A. B.

  C. D.

  3、在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程為關(guān)于x,y的二元一次方程,則k值為( )

  A、-2 B、2或-2 C、2 D、以上答案都不對(duì)

  4、二元一次方程x-2y=1有無數(shù)多個(gè)解,下列四組值中不是該方程的解的是( )

  A、 B、 C、 D、

  5、二元一次方程組的解為( )

  A. B. C. D.

  6.為了開展陽光體育活動(dòng),某班計(jì)劃購買毽子和跳繩兩種體育用品,共花費(fèi)35元,毽子單價(jià)3元,跳繩單價(jià)5元,購買方案有( )

  A、1種B、2種C、3種D、4種

  設(shè)計(jì)意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),升華知識(shí)

  六、拓展延伸

  1、有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運(yùn)貨15.5噸,5輛大貨車與6輛小貨車一次可以運(yùn)貨35噸,設(shè)一輛大貨車一次可以運(yùn)貨x噸,一輛小貨車一次可以運(yùn)貨y噸,根據(jù)題意所列方程組正確的是( )

  A. B.

  C. D.

  2、甲、乙兩人共同解方程組由于甲看錯(cuò)了方程①中的a,得到方程組的解為乙看錯(cuò)了方程②中的b,得到方程組的解為試計(jì)算a2 016+(-b)2 017.

  設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)是鞏固本課知識(shí)點(diǎn),通過設(shè)置練習(xí),來檢測(cè)學(xué)生的掌握情況,在這部分的設(shè)計(jì)中,主要是發(fā)揮學(xué)生作為教學(xué)主體的主動(dòng)性,讓學(xué)生感受學(xué)習(xí)的樂趣和成功的喜悅。

  七、課堂小結(jié)

  以提問進(jìn)行:

  (1)、二元一次方程(組)的特征是什么?

 。2)、二元一次方程組的解要滿足什么條件?

  設(shè)計(jì)意圖:通過共同小結(jié)使學(xué)生歸納、梳理總結(jié)本節(jié)的知識(shí)、技能、方法,將本課所學(xué)的知識(shí)與以前所學(xué)的知識(shí)進(jìn)行緊密聯(lián)結(jié),再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),改善學(xué)生的學(xué)習(xí)方式。有利于培養(yǎng)學(xué)生數(shù)學(xué)思想、數(shù)學(xué)方法、數(shù)學(xué)能力和對(duì)數(shù)學(xué)的積極情感、同時(shí)為以后的學(xué)習(xí)作知識(shí)儲(chǔ)備.

  八、教學(xué)反思

  1.概念課教學(xué)模式:本節(jié)課的主要內(nèi)容是二元一次方程(組)的有關(guān)概念,設(shè)計(jì)時(shí)按照“實(shí)例研究,初步體會(huì)——比較分析,把握實(shí)質(zhì)——?dú)w納概括,形成定義——應(yīng)用提高,發(fā)展能力”的思路進(jìn)行,讓學(xué)生體會(huì)到是因?yàn)椤靶枰倍鴮W(xué)習(xí)新知識(shí),逐步滲透應(yīng)用意識(shí)。

  2.類比法的運(yùn)用:二元一次方程及其解的意義類比一元一次方程學(xué)習(xí),一方面加深學(xué)生對(duì)于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關(guān)知識(shí)的異同,同時(shí)為二元一次方程組相關(guān)概念掃清障礙。

  3.分層遞進(jìn),循環(huán)上升:學(xué)生對(duì)知識(shí)的理解,教師對(duì)學(xué)生的要求,都是由低到高,逐步提升,題目的設(shè)計(jì)從單一知識(shí)點(diǎn)的直接運(yùn)用,逐漸到多個(gè)知識(shí)點(diǎn)的靈活運(yùn)用,給學(xué)生設(shè)計(jì)必要的臺(tái)階,使其一步步向前,最終達(dá)到教學(xué)目標(biāo)。

  二元一次方程教學(xué)設(shè)計(jì)教案 7

  1教學(xué)目標(biāo)

  教學(xué)目標(biāo):

  根據(jù)新課標(biāo)要求,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下教學(xué)目標(biāo):

  知識(shí)與技能:會(huì)用代入消元法解二元一次方程組.

  過程和方法:對(duì)代入消元法的探究,使學(xué)生體會(huì)代入消元法所體現(xiàn)的化未知為已知的化歸思想方法.

  情感、態(tài)度與價(jià)值觀:通過探究解決問題的方法,培養(yǎng)學(xué)生合作交流意識(shí)與探究精神,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型.

  2學(xué)情分析

  3重點(diǎn)難點(diǎn)

  教學(xué)重難點(diǎn):

  重點(diǎn):代入消元法解二元一次方程組.

  難點(diǎn):對(duì)代入消元法解二元一次方程組過程的理解.

  關(guān)鍵:掌握代入消元法的關(guān)鍵是化二元方程為一元方程,而轉(zhuǎn)化的關(guān)鍵是將方程組其中一個(gè)方程變形為“y=ax+b”或“x=ay+b”(其中a、b為常數(shù))的形式,因而對(duì)代入消元法的理解關(guān)鍵是對(duì)“消元”思想的理解.

  4教學(xué)過程

  4.1第一學(xué)時(shí)

  教學(xué)活動(dòng)

  活動(dòng)1【導(dǎo)入】教學(xué)過程

  問題:我校計(jì)劃舉行班級(jí)籃球聯(lián)賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分,為了爭取出線名額,我班至少要在全部10場(chǎng)比賽中得到16分,那么,我班勝負(fù)場(chǎng)數(shù)分別是多少?

  設(shè)計(jì)意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,滲透方程(組)解決實(shí)際問題的有效性.由于問題的解法在上一節(jié)中已經(jīng)討論過,所以這里的側(cè)重點(diǎn)不是列方程(組),而是為探究二元一次方程組和一元一次方程的關(guān)系服務(wù).

  1、解法一:直接設(shè)兩個(gè)未知數(shù),設(shè)勝x場(chǎng),負(fù)y場(chǎng),根據(jù)題意列方程組得

  思考(緊扣課題,明確主要內(nèi)容):這個(gè)方程組的解是什么?如何解方程組?接下來我們將探討如何解二元一次方程組?

  2、解法二:只設(shè)一個(gè)未知數(shù),設(shè)勝x場(chǎng),則負(fù)(10-x)場(chǎng),根據(jù)題意列方程得

  2x+(10-x)=16

  活動(dòng)2【講授】過程

  1、思考:上述的二元一次方程組和一元一次方程有什么關(guān)系?

  教法:教師提出問題后,將學(xué)生分成小組討論.教師深入學(xué)生的'討論中,引導(dǎo)學(xué)生觀察 ,給予學(xué)生肯定與鼓勵(lì).歸納總結(jié):我們發(fā)現(xiàn),解法一所設(shè)的y相當(dāng)于解法二中的(10-x),因?yàn)閱栴}中y和(10-x)都表示負(fù)場(chǎng)數(shù),進(jìn)一步發(fā)現(xiàn)方程組中第一個(gè)方程x+y=10可以寫成y=10-x,而由于兩個(gè)方程中的y都表示負(fù)的場(chǎng)數(shù),所以我們把第二個(gè)方程2x+y=16中的y換為10-x,這個(gè)方程就轉(zhuǎn)化為一元一次方程2x+(10-x)=16,解這個(gè)方程,得x=6.把x=6代入y=10-x,得y=4.從而得到這個(gè)方程組的解.

  適時(shí)給出概念,感受概念是通過實(shí)際生活抽象得出的

  2、消元思想

  二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程.我們可以先求出一個(gè)未知數(shù),然后再求出另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)有多化少、逐一解決的思想,叫做消元思想.

  歸納總結(jié):上面的解法,是把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解.這種方法叫做代入消元法,簡稱代入法

  二元一次方程組 一元一次方程.

  設(shè)計(jì)意圖:通過梳理“情境問題”中方程組的解法過程,給出數(shù)學(xué)方法的名稱,即數(shù)學(xué)概念,從而體驗(yàn)“過程與方法”.

  (三)知識(shí)應(yīng)用

  1、嘗試解題,獨(dú)立完成

  例1 用代入法解方程組

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,同時(shí)通過初次嘗試,引起學(xué)生對(duì)數(shù)學(xué)解題步驟的重視.

  解:由①,得x=y+3. ③

  把③代入②,得

  3(y+3)-8y=14.

  解這個(gè)方程,得y=-1.

  把y =-1代入③,得

  x=2.

  所以,這個(gè)方程組的解是

  思考:

 。1)把③代入①可以嗎?試試看.

 。2)把y =-1代入① 或②可以嗎?

  2、課堂練習(xí)

  練習(xí)1:把下列方程改寫用含x的式子表示y的形式(1)2x-y=3;(2)3x+y-1=0

  練習(xí)2:用代入法解下列方程組

 。1) (2)

  設(shè)計(jì)意圖:第1題體現(xiàn)了難點(diǎn)突破中“關(guān)鍵”即二元一次方程變形的關(guān)鍵,第二題能讓學(xué)生通過解決問題,總結(jié)歸納出解題的一般步驟和解題技巧.

  最后,師生歸納出代入法解二元一次方程組的一般步驟:

 、僮冃危ㄟx擇其中一個(gè)方程,把它變形為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù));

 、诖耄ò炎冃魏玫姆匠檀氲搅硪粋(gè)方程,即可消元)

 、矍蠼猓ń庖辉淮畏匠,得一個(gè)未知數(shù)的值);

 、芑卮ò亚蟮玫奈粗獢(shù)代入到變形的方程,求出另一個(gè)未知數(shù)的值);

  ⑤寫解(用 x=a 的形式寫出方程組的解).

  y=b

 、掾(yàn)算(把方程的解代回原方程組驗(yàn)算)

  簡記:變形→代入→求解→回代→寫解→驗(yàn)算

  活動(dòng)3【作業(yè)】作業(yè)

  1.(必做題)教材P97頁習(xí)題8.2復(fù)習(xí)鞏固第1、2題

  2.(選做題) 教材P97頁思考題(1)

  二元一次方程教學(xué)設(shè)計(jì)教案 8

  一、教材的地位和作用:

  本節(jié)課是在復(fù)習(xí)一元一次方程及其應(yīng)用的基礎(chǔ)上,對(duì)二元一次方程組及其應(yīng)用的復(fù)習(xí),進(jìn)一步體會(huì)消元的數(shù)學(xué)思想,以及化“未知”為“已知”,化復(fù)雜問題為簡單問題的化歸思想,體會(huì)二元一次方程組與現(xiàn)實(shí)生活之間的聯(lián)系的一般的圓周角的性質(zhì)進(jìn)行探索,圓周角性質(zhì)在圓的有關(guān)說理、作圖、計(jì)算中有著廣泛的應(yīng)用,也是學(xué)習(xí)圓的后續(xù)知識(shí)的重要預(yù)備知識(shí),在教材中起著承上啟下的作用、同時(shí),圓周角性質(zhì)也是說明線段相等,角相等的重要依據(jù)之一。

  二、學(xué)情分析:

  九年級(jí)下學(xué)期的學(xué)生有一定的知識(shí)結(jié)構(gòu)體系和解決問題的能力。所以在教學(xué)中除了讓學(xué)生靈活應(yīng)用“代入法”和“消元法”解二元一次方程組之外,還應(yīng)建立數(shù)學(xué)與生活的聯(lián)系,引導(dǎo)學(xué)生用數(shù)學(xué)的眼光思考問題、解決問題。

  三、教學(xué)目標(biāo):

  1、知識(shí)與技能:會(huì)用代入消元法和加減消元法解簡單的二元一次方程組,并能根據(jù)方程組的特點(diǎn),靈活選用適當(dāng)?shù)慕夥ā?/p>

  2、過程與方法:探求二元一次方程組的解法,體會(huì)消元的數(shù)學(xué)思想。

  3、情感、態(tài)度、價(jià)值觀:滲透轉(zhuǎn)化的辯證觀點(diǎn),培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際生活問題的實(shí)踐能力。

  四、教學(xué)重點(diǎn)與難點(diǎn):

  1、重點(diǎn):掌握消元思想,熟練地解二元一次方程組.會(huì)用二元一次方程組解決一些簡單的實(shí)際問題。

  2、難點(diǎn):是圖象法解二元一次方程組,數(shù)形結(jié)合思想.

  五、教學(xué)過程:

 。ㄒ唬┲R(shí)回顧:

  1.含有2個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的.方程叫做二元一次方程。

  2.由兩個(gè)或兩個(gè)以上的二元一次方程所組成的方程組叫做二元一次方程組。

  3.適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

  4.二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  5.解二元一次方程組的基本思想是消元法,即把“二元”變成“一元”,方法有代入消元法和加減消元法。

  6.列二元一次方程組解應(yīng)用題的一般步驟為:一審,二找等量關(guān)系,三設(shè)未知數(shù),四列二元一次方程組,五解,六答。

 。ǘ┲攸c(diǎn)展現(xiàn):

  例1:解下例方程組:

 。1)解:由①得,=1-③……將其中一個(gè)未知數(shù)用另外一個(gè)未知數(shù)表示;

  將③代入②得,3+2(1-)=5……將變形后的方程代入另一個(gè)方程;

  解得,=3…………解一元一次方程求出其中一個(gè)未知數(shù)的值;

  把=3代入方程③得,=1-3=-2……把求出的未知數(shù)的值代入變形后的方程,求出另一個(gè)未知數(shù)的值

  ∴原方程組的解為

 。2)解:由①×2得,4+6=16③……變形方程,使得某個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù);

  由②-③得,11=22……消掉其中的一個(gè)未知數(shù),得到一元一次方程;

  解得,=2……解一元一次方程求出其中一個(gè)未知數(shù)的值;

  把=2代入方程①得,=1……把求出的未知數(shù)的值代入變形后的方程,求出另一個(gè)未知數(shù)的值

  ∴原方程組的解為x

 。ㄈ╈柟虘(yīng)用:

  例1、已知以、為未知數(shù)的方程組的方程組與的解相同,試求、的值。

  解:解方程組,得

  把代入方程組,得,

  解得

  例2(xxxx年xx中考題)、某班將舉行“慶祝建黨90周年知識(shí)競賽“活動(dòng),班長安排小明購買獎(jiǎng)品,下面兩圖是小明買回獎(jiǎng)品時(shí)與班長的對(duì)話情境:

  請(qǐng)根據(jù)上面的信息、試計(jì)算兩種筆記本各買了多少本?

  解:設(shè)購買單價(jià)為5元的筆記本本,單價(jià)為8元的筆記本本,依題意,得:

  解得:

  經(jīng)檢驗(yàn),符合題意。

  ∴購買單價(jià)為5元的筆記本25本,單價(jià)為8元的筆記本15本。

  (四)能力提升:

  例1、已知一次函數(shù)=+1與另一個(gè)一次函數(shù)=相交于點(diǎn)A,試求出點(diǎn)A的坐標(biāo)。

  解:依題意,得

  解得:,

  ∴點(diǎn)A的坐標(biāo)為(3,-2).

  例2.(2019年xx中考模擬題)某旅游商品經(jīng)銷店欲購進(jìn)A、B兩種紀(jì)念品,若用380元購進(jìn)A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品6件。

 。1)求A、B兩種紀(jì)念品的進(jìn)價(jià)分別為多少?

 。2)若該商店每銷售1件A種紀(jì)念品可獲利5元,每銷售1件B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進(jìn)A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出候總獲利不低于216元,問應(yīng)該怎樣進(jìn)貨,才能使總獲利最大,最大為多少?

  解:(1)設(shè)A種紀(jì)念品的進(jìn)價(jià)為元,B種紀(jì)念品的進(jìn)價(jià)為元,依題意,得:

  解得:x,

  答:A、B兩種紀(jì)念品的進(jìn)價(jià)分別為20元、30元

 。2)設(shè)商店準(zhǔn)備購進(jìn)A種紀(jì)念品a件,則購進(jìn)B種紀(jì)念品(40-a)件,依題意,得

  解得:

  ∵總獲利是a的一次函數(shù),且w隨a的增大而減小

  ∴當(dāng)a=30時(shí),w最大,最大值w=-2×30+280=220.

  ∴40-a=10

  ∴應(yīng)進(jìn)A種紀(jì)念品30件,B種紀(jì)念品10件,才能使獲得利潤最大,最大值是220元.

 。ㄎ澹┱n堂練習(xí):

  1、解下例方程組:

  2、若方程組的解為,試求、的值。

  (六)家庭作業(yè):

  1、必做題:指南第25頁A組2(2)、(3),4

  2、選做題:指南第26頁B組2,3

  二元一次方程教學(xué)設(shè)計(jì)教案 9

  教學(xué)目標(biāo)

  1.會(huì)用代入法解二元一次方程組;

  2.體會(huì)解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.

  3.通過對(duì)方程中未知數(shù)特點(diǎn)的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

  教學(xué)重難點(diǎn)

  1.熟練的用代入法解二元一次方程組。

  2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。

  教學(xué)過程

  一、創(chuàng)設(shè)問題,引入新課

  1.問題1:籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分.某隊(duì)為了爭取較好的名次,想在全部20場(chǎng)比賽中得到38分,那么這個(gè)隊(duì)勝、負(fù)場(chǎng)數(shù)分別是多少?

  解:設(shè)勝場(chǎng)數(shù)是x則負(fù)的場(chǎng)數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負(fù)的場(chǎng)數(shù)為

  20-x=20-18=2

  2.問題2:在上述問題中,我們可以設(shè)出兩個(gè)未知數(shù),列出二元一次方程組,若設(shè)勝的場(chǎng)數(shù)是x,負(fù)的`場(chǎng)數(shù)是y,則

  x+y=20

  2x+y=38

  那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?

  設(shè)計(jì)意圖:通過創(chuàng)設(shè)同一問題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對(duì)兩者關(guān)聯(lián)認(rèn)識(shí),為后續(xù)代入消元法解二元一次方程作鋪墊。

  二、學(xué)生探索,嘗試解決

  交流問題2:可以發(fā)現(xiàn),二元一次方程組中第一個(gè)方程x+y=20可的到y(tǒng)=20-x,將第2個(gè)方程2x+y=38中y換為20-x,這個(gè)方程就化為一元一次方程2x+(20-x)=38.

  歸納:

  二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個(gè)未知數(shù),然后再設(shè)法求另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想方法,叫做消元思想.

  歸納小結(jié):上面的解法,是把二元一次方程組中一個(gè)方程中的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的 解.這種方法叫做代入消元法,簡稱代入法.

  設(shè)計(jì)意圖:通過交流問題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來,代入消元法的步驟和功效逐步顯現(xiàn)出來。

  三、典例交流,揭示規(guī)律

  例1:用代入法解二元一次方程組x=y+3(1)

  3x-8y=14(2)

  解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

  所以這個(gè)方程組的解是 x=2,

  y=-1

  思考下列問題

 。1)選擇哪個(gè)方程代入另一個(gè)方程?目的是什么?

 。2)為什么能代入?目的達(dá)到了嗎?

 。3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個(gè)方程求x的值較簡單?

 。4)怎樣知道你運(yùn)算的結(jié)果是否正確?

  反思:需檢驗(yàn),將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗(yàn)算.【例2】用代入法解二元一次方程組x-y=3(1)

  3x-8y=14(2)

  思考:

  (1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個(gè)方程都不具備這樣的條件.)

  (2)如何變形?(把其中一個(gè)方程變形為例1中①的形式.)

  (3)選擇哪個(gè)方程變形較簡單?(方程①中的x的系數(shù)為1,故可以將方程①變形得x=3+y.)

 。▽W(xué)生口述,教師板書完成)

  用代入消元法解二元一次方程組的步驟:

  (1)從方程組中選取一個(gè)系數(shù)比較簡單的方程,把其中的某一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來.(變)

  (2)把(1)中所得的方程代入另一個(gè)方程,消去一個(gè)未知數(shù).(代)

  (3)解所得到的一元一次方程,求得一個(gè)未知數(shù)的值.(求)

  (4)把所求得的一個(gè)未知數(shù)的值代入(1)中求得的方程,求出另一個(gè)未知數(shù)的值,從而確定方程組的解.(解)

  設(shè)計(jì)意圖:進(jìn)一步加強(qiáng)利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。

  四、變式訓(xùn)練,深化提高

  用代入法解下面方程組

  設(shè)計(jì)意圖:通過學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。

  五、師生共進(jìn),反思小結(jié)1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組

  2、主要的解題思想方法是消元思想。

  3、代入消元法解二元一次方程組需要注意的問題.

  (1)用代入法解二元一次方程組時(shí),常選用系數(shù)比較簡單的方程變形,這有利于正確、簡捷地消元.

  (2)由一個(gè)方程變形得到的只含有一個(gè)未知數(shù)的代數(shù)式必須代入到另一個(gè)方程中去,否則會(huì)出現(xiàn)一個(gè)恒等式.

  (3)方程組解的表示方法,應(yīng)該用大括號(hào)把一對(duì)未知數(shù)的值連在一起,表示同時(shí)成立,不要寫成x=?y=?

  六、布置作業(yè):

  習(xí)題8.2 1,2題

  七、板書設(shè)計(jì)

  二元一次方程教學(xué)設(shè)計(jì)教案 10

  二元一次方程

  §11.1 二元一次方程

  【教學(xué)目標(biāo)】

  【知識(shí)目標(biāo)】

  了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。

  【能力目標(biāo)】

  通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

  【情感目標(biāo)】

  通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【重點(diǎn)】

  二元一次方程組的含義

  【難點(diǎn)】

  判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【教學(xué)過程】

  一、引入、實(shí)物投影

  1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個(gè),才比我多馱2個(gè)”老牛氣不過地說:“哼,我從你背上拿來一個(gè),我的包裹就是你的.2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?

  2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)

  這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)

  師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少? (含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)

  師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

  注意:這個(gè)定義有兩個(gè)地方要注意①、含有兩個(gè)未知數(shù),②、含未知數(shù)的次數(shù)是一次

  練習(xí)(投影)

  下列方程有哪些是二元一次方程

  +2y=1 xy+x=1 3x-=5 x2-2=3x

  xy=1 2x(y+1)=c 2x-y=1 x+y=0

  二、議一議、

  師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?

  師:由于x、y的含義分別相同,因而必同時(shí)滿足x-y=2和x+1=2(y-1),我們把這兩個(gè)方程用大括號(hào)聯(lián)立起來,寫成

  x-y=2

  x+1=2(y-1)

  像這樣含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。

  如: 2x+3y=3 5x+3y=8

  x-3y=0 x+y=8

  三、做一做、

  1、 x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?

  2、 X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?

  你能找到一組值x,y同時(shí)適合方程x+y=8和5x+3y=34嗎?

  x=6,y=2是方程x+y=8的一個(gè)解,記作 x=6 同樣, x=5

  y=2 y=3

  也是方程x+y=8的一個(gè)解,同時(shí) x=5 又是方程5x+3y=34的一個(gè)解,

  y=3

  四、隨堂練習(xí)(P103)

  五、小結(jié):

  1、 含有兩未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)是一次的整式方程叫做二元一次方程。

  2、 二元一次方程的解是一個(gè)互相關(guān)聯(lián)的兩個(gè)數(shù)值,它有無數(shù)個(gè)解。

  3、 含有兩個(gè)未知數(shù)的兩個(gè)二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個(gè)方程的公共解,是一組確定的值。

  六、教后感:

  七、自備部分

  二元一次方程教學(xué)設(shè)計(jì)教案 11

  教學(xué)目標(biāo):

  1. 認(rèn)識(shí)二元一次方程和二元一次方程組.

  2. 了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.

  教學(xué)重點(diǎn):

  理解二元一次方程組的解的意義.

  教學(xué)難點(diǎn):

  求二元一次方程的正整數(shù)解.

  教學(xué)過程:

  籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分.負(fù)一場(chǎng)得1分,某隊(duì)為了爭取較好的名次,想在全部22場(chǎng)比賽中得到40分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?

  思考:

  這個(gè)問題中包含了哪些必須同時(shí)滿足的條件?設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,你能用方程把這些條件表示出來嗎?

  由問題知道,題中包含兩個(gè)必須同時(shí)滿足的條件:

  勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù),

  勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分.

  這兩個(gè)條件可以用方程

  x+y=22

  2x+y=40

  表示.

  上面兩個(gè)方程中,每個(gè)方程都含有兩個(gè)未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.

  把兩個(gè)方程合在一起,寫成

  x+y=22

  2x+y=40

  像這樣,把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.

  探究:

  滿足方程①,且符合問題的實(shí)際意義的x、y的.值有哪些?把它們填入表中.

  x

  y

  上表中哪對(duì)x、y的值還滿足方程②

  一般地,使二元一次方程兩邊的值相等的兩個(gè)未知數(shù)的值,叫做二元一次方程的解.

  二元一次方程組的兩個(gè)方程的公共解,叫做二元一次方程組的解.

  例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,試求a、b的取值范圍.

  (2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,試求a的值.

  例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

  例3 已知下列三對(duì)值:

  x=-6 x=10 x=10

  y=-9 y=-6 y=-1

  (1) 哪幾對(duì)數(shù)值使方程 x-y=6的左、右兩邊的值相等?

  (2) 哪幾對(duì)數(shù)值是方程組 的解?

  例4 求二元一次方程3x+2y=19的正整數(shù)解.

  課堂練習(xí):

  教科書第102頁練習(xí)

  習(xí)題8.1 1、2題

  作業(yè):

  教科書第102頁3、4、5題

  二元一次方程教學(xué)設(shè)計(jì)教案 12

  教學(xué)目標(biāo)

  知識(shí)與技能

  (1)初步理解二元一次方程和一次函數(shù)的關(guān)系;

  (2)掌握二元一次方程組和對(duì)應(yīng)的兩條直線之間的關(guān)系;

  (3)掌握二元一次方程組的圖像解法.

  過程與方法

  (1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;

  (2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.

  情感與態(tài)度

  (1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

  (2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.

  教學(xué)重點(diǎn)

  (1)二元一次方程和一次函數(shù)的關(guān)系;

  (2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系.

  教學(xué)難點(diǎn)

  數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

  教學(xué)準(zhǔn)備

  教具:多媒體課件、三角板.

  學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

  教學(xué)過程

  第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))

  內(nèi)容:

  1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?

  2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

  3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

  4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的`圖像與一次函數(shù)y=的圖像相同嗎?

  由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

  二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

  (1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

  (2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

  第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)

  內(nèi)容:1.解方程組

  2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.

  3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識(shí)點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

  (1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

  (2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

  (3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

  注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

  第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)

  探究方程與函數(shù)的相互轉(zhuǎn)化

  內(nèi)容:例1用作圖像的方法解方程組

  例2如圖,直線與的交點(diǎn)坐標(biāo)是.

  第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)

  內(nèi)容:

  1.已知一次函數(shù)與的圖像的交點(diǎn)為,則.

  2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)A(—2,0),且與軸分別交于B,C兩點(diǎn),則的面積為().

  (A)4(B)5(C)6(D)7

  3.求兩條直線與和軸所圍成的三角形面積.

  4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

  第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))

  內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

  1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

  (1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

  (2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

  2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

  (1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

  (2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

  3.解二元一次方程組的方法有3種:

  (1)代入消元法;

  (2)加減消元法;

  (3)圖像法.要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

  第六環(huán)節(jié)作業(yè)布置

  習(xí)題7.7A組(優(yōu)等生)1、2、3B組(中等生)1、2C組1、2

  附:板書設(shè)計(jì)

  六、教學(xué)反思

【二元一次方程教學(xué)設(shè)計(jì)教案】相關(guān)文章:

二元一次方程組教學(xué)設(shè)計(jì)07-07

二元一次方程組教學(xué)設(shè)計(jì)04-03

二元一次方程教學(xué)設(shè)計(jì)(精選10篇)02-10

二元一次方程組教學(xué)設(shè)計(jì)(通用10篇)04-13

二元一次方程教案(精選7篇)03-30

二元一次方程與一次函數(shù)教學(xué)教案04-02

七年級(jí)下冊(cè)《消元──解二元一次方程組》教學(xué)設(shè)計(jì)(精選8篇)01-13

三元一次方程組教學(xué)設(shè)計(jì)03-22

杠桿教學(xué)設(shè)計(jì)教案03-12