- 相關(guān)推薦
人教版五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)
本學(xué)期的期末考試已經(jīng)臨近,各年級、各學(xué)科都已經(jīng)進(jìn)入到緊張的復(fù)習(xí)階段。應(yīng)屆畢業(yè)生小編整理了人教版五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié),供大家參考!
五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)1
1.軸對稱:
如果一個圖形沿一條直線折疊,直線兩側(cè)的圖形能夠互相重合,這個圖形就叫做軸對稱圖形,這時,我們也說這個圖形關(guān)于這條直線(成軸)對稱。
對稱軸:折痕所在的這條直線叫做對稱軸。
2.軸對稱圖形的性質(zhì):把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn)。軸對稱和軸對稱圖形的特性是相同的,對應(yīng)點(diǎn)到對稱軸的距離都是相等的。
3.軸對稱的性質(zhì):經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。這樣我們就得到了以下性質(zhì):
(1)如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
(2)類似地,軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
(3)線段的垂直平分線上的點(diǎn)與這條線段的兩個端點(diǎn)的距離相等。
(4)對稱軸是到線段兩端距離相等的點(diǎn)的集合。
4.軸對稱圖形的作用:
(1)可以通過對稱軸的一邊從而畫出另一邊;
(2)可以通過畫對稱軸得出的兩個圖形全等。
5.因數(shù):整數(shù)B能整除整數(shù)A,A叫作B的倍數(shù),B就叫做A的因數(shù)或約數(shù)。在自然數(shù)的范圍內(nèi)例:在算式6÷2=3中,2、3就是6的因數(shù)。
6.自然數(shù)的因數(shù)(舉例):
6的因數(shù)有:1和6,2和3.
10的因數(shù)有:1和10,2和5.
15的因數(shù)有:1和15,3和5.
25的因數(shù)有:1和25,5.
7.因數(shù)的分類:除法里,如果被除數(shù)除以除數(shù),所得的商都是自然數(shù)而沒有余數(shù),就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。
我們將一個合數(shù)分成幾個質(zhì)數(shù)相乘的形式,這樣的幾個質(zhì)數(shù)叫做這個合數(shù)的質(zhì)因數(shù)。
8.倍數(shù):對于整數(shù)m,能被n整除(n/m),那么m就是n的倍數(shù)。如15能夠被3或5整除,因此15是3的倍數(shù),也是5的倍數(shù)。
一個數(shù)的倍數(shù)有無數(shù)個,也就是說一個數(shù)的倍數(shù)的集合為無限集。注意:不能把一個數(shù)單獨(dú)叫做倍數(shù),只能說誰是誰的倍數(shù)。
9.完全數(shù):完全數(shù)又稱完美數(shù)或完備數(shù),是一些特殊的自然數(shù)。它所有的真因子(即除了自身以外的約數(shù))的和(即因子函數(shù)),恰好等于它本身。
10.偶數(shù):整數(shù)中,能夠被2整除的數(shù),叫做偶數(shù)。
11.奇數(shù):整數(shù)中,能被2整除的數(shù)是偶數(shù),不能被2整除的數(shù)是奇數(shù),
12.奇數(shù)偶數(shù)的性質(zhì):
關(guān)于奇數(shù)和偶數(shù),有下面的性質(zhì):
(1)奇數(shù)不會同時是偶數(shù);兩個連續(xù)整數(shù)中必是一個奇數(shù)一個偶數(shù);
(2)奇數(shù)跟奇數(shù)和是偶數(shù);偶數(shù)跟奇數(shù)的和是奇數(shù);任意多個偶數(shù)的和都是偶數(shù);
(3)兩個奇(偶)數(shù)的差是偶數(shù);一個偶數(shù)與一個奇數(shù)的差是奇數(shù);
(4)除2外所有的正偶數(shù)均為合數(shù);
(5)相鄰偶數(shù)最大公約數(shù)為2,最小公倍數(shù)為它們乘積的一半。
(6)奇數(shù)的積是奇數(shù);偶數(shù)的積是偶數(shù);奇數(shù)與偶數(shù)的積是偶數(shù);
(7)偶數(shù)的個位上一定是0、2、4、6、8;奇數(shù)的個位上是1、3、5、7、9.
13.質(zhì)數(shù):指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,沒法被其他自然數(shù)整除的數(shù)。
14.合數(shù):比1大但不是素?cái)?shù)的數(shù)稱為合數(shù)。1和0既非素?cái)?shù)也非合數(shù)。合數(shù)是由若干個質(zhì)數(shù)相乘而得到的。
質(zhì)數(shù)是合數(shù)的基礎(chǔ),沒有質(zhì)數(shù)就沒有合數(shù)。
15.長方體:由六個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫長方體.長方體的任意一個面的對面都與它完全相同。
16.長、寬、高:長方體的每一個矩形都叫做長方體的面,面與面相交的線叫做長方體的棱,三條棱相交的點(diǎn)叫做長方體的頂點(diǎn),相交于一個頂點(diǎn)的三條棱的長度分別叫做長方體的長、寬、高。
17.長方體的特征:
(1)長方體有6個面,每個面都是長方形,至少有兩個相對的兩個面完全相同。特殊情況時有兩個面是正方形,其他四個面都是長方形,并且完全相同。
(3)長方體有12條棱,相對的棱長度相等。可分為三組,每一組有4條棱。還可分為四組,每一組有3條棱。
(3)長方體有8個頂點(diǎn)。每個頂點(diǎn)連接三條棱。
(4)長方體相鄰的兩條棱互相(相互)垂直。
18.長方體的表面積:因?yàn)橄鄬Φ?個面相等,所以先算上下兩個面,再算前后兩個面,最后算左右兩個面。
設(shè)一個長方體的長、寬、高分別為a、b、c,則它的表面積S:
S=2ab+2bc+2ca
=2(ab+bc+ca)
19.長方體的體積:
長方體的體積=長×寬×高
設(shè)一個長方體的長、寬、高分別為a、b、c,則它的體積V:
V=abc=Sh
20.長方體的棱長:
長方體的棱長之和=(長+寬+高)×4
長方體棱長字母公式C=4(a+b+c)
相對的棱長長度相等
長方體棱長分為3組,每組4條棱。每一組的`棱長度相等
21.正方體:側(cè)面和底面均為正方形的直平行六面體叫正方體,即棱長都相等的六面體,又稱“立方體”、“正六面體”。正方體是特殊的長方體。
22.正方體的特征:
(1)有6個面,每個面完全相同。
(2)有8個頂點(diǎn)。
(3)有12條棱,每條棱長度相等。
(4)相鄰的兩條棱互相(相互)垂直。
23.正方體的表面積:
因?yàn)?個面全部相等,所以正方體的表面積=一個面的面積×6=棱長×棱長×6
設(shè)一個正方體的棱長為a,則它的表面積S:
S=6×a×a或等于S=6a2
24.正方體的體積:
正方體的體積=棱長×棱長×棱長;設(shè)一個正方體的棱長為a,則它的體積為:
V=a×a×a
25.正方體的展開圖:正方體的平面展開圖一共有11種。
26.分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫分?jǐn)?shù)。表示這樣的一份的數(shù)叫分?jǐn)?shù)單位。
27.分?jǐn)?shù)分類:分?jǐn)?shù)可以分成:真分?jǐn)?shù),假分?jǐn)?shù),帶分?jǐn)?shù),百分?jǐn)?shù)
28.真分?jǐn)?shù):分子比分母小的分?jǐn)?shù),叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于一。如:1/2,3/5,8/9等等。真分?jǐn)?shù)一般是在正數(shù)的范圍內(nèi)研究的。
29.假分?jǐn)?shù):分子大于或者等于分母的分?jǐn)?shù)叫假分?jǐn)?shù),假分?jǐn)?shù)大于1或等于1.
假分?jǐn)?shù)通?梢曰癁閹Х?jǐn)?shù)或整數(shù)。如果分子和分母成倍數(shù)關(guān)系,就可化為整數(shù),如不是倍數(shù)關(guān)系,則化為帶分?jǐn)?shù)。
30.分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以一個不為0的數(shù),分?jǐn)?shù)的值不變。
31.約分:把一個分?jǐn)?shù)化成和它相等,但分子、分母都比較小的分?jǐn)?shù),叫做約分
32.公因數(shù):在兩個或兩個以上的自然數(shù)中,如果它們有相同的因數(shù),那么這些因數(shù)就叫做它們的公因數(shù)。任何兩個自然數(shù)都有公因數(shù)1.(除零以外)而這些公因數(shù)中最大的那個稱為這些正整數(shù)的最大公因數(shù)。
33.通分:根據(jù)分?jǐn)?shù)的基本性質(zhì),把幾個異分母分?jǐn)?shù)化成與原來分?jǐn)?shù)相等的且分母相同的分?jǐn)?shù),叫做通分。
34.通分方法:
(1)求出原來幾個分?jǐn)?shù)的分母的最小公倍數(shù)
(2)根據(jù)分?jǐn)?shù)的基本性質(zhì),把原來分?jǐn)?shù)化成以這個最小公倍數(shù)為分母的分?jǐn)?shù)
35.公倍數(shù):指在兩個或兩個以上的自然數(shù)中,如果它們有相同的倍數(shù),這些倍數(shù)就是它們的公倍數(shù)。這些公倍數(shù)中最小的,稱為這些整數(shù)的最小公倍數(shù)
36.分?jǐn)?shù)加減法:
(1)同分母分?jǐn)?shù)相加減,分母不變,即分?jǐn)?shù)單位不變,分子相加減,最后要化成最簡分?jǐn)?shù)。
(2)異分母分?jǐn)?shù)相加減,先通分,即運(yùn)用分?jǐn)?shù)的基本性質(zhì)將異分母分?jǐn)?shù)轉(zhuǎn)化為同分母分?jǐn)?shù),改變其分?jǐn)?shù)單位而大小不變,再按同分母分?jǐn)?shù)相加減法去計(jì)算,最后要化成最簡分?jǐn)?shù)。
37.統(tǒng)計(jì)圖:復(fù)式折線統(tǒng)計(jì)圖是用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點(diǎn),然后把各點(diǎn)用線段順次連接起來,以折線的上升或下降來表示統(tǒng)計(jì)數(shù)量增減變化。折線統(tǒng)計(jì)圖不但可以表示出數(shù)量的多少,而且還能夠清楚的表示出數(shù)量增減變化的情況。
擴(kuò)展資料:
1.約數(shù)與因數(shù)區(qū)別:
(1)數(shù)域不同。約數(shù)只能是自然數(shù),而因數(shù)可以是任何數(shù)。
(2)關(guān)系不同。約數(shù)是對兩個自然數(shù)的整除關(guān)系而言,只要兩個數(shù)是自然數(shù),就能確定它們之間是否存在約數(shù)關(guān)系,如:40÷5=8,40能被5整除,5就是40的約數(shù),12÷10=1.2,12不能被10整除,10不是12的約數(shù)。因數(shù)是兩個或兩個以上的數(shù)對它們的乘積關(guān)系而言的。如:8×2=16,8和2都是積16的因數(shù),離開乘積算式就沒有因數(shù)了。
(3)大小關(guān)系不同.當(dāng)數(shù)a是數(shù)b的約數(shù)時,a不能大于b,當(dāng)a是b的因數(shù)時,a可以大于b,也可以小于b。
一般情況下,約數(shù)等于因數(shù)。
2.公因數(shù):兩個或多個非零自然數(shù)公有的因數(shù)叫做它們的公因數(shù)。
兩個數(shù)共有的因數(shù)里最大的那一個叫做它們的最大公因數(shù)。(零除外)
其它:1是所有非零自然數(shù)的公因數(shù)。
兩個成倍數(shù)關(guān)系的自然數(shù)之間,小的那一個數(shù)就是這兩個數(shù)的最大公因數(shù)。
3.完全數(shù)的由來:
公元前6世紀(jì)的畢達(dá)哥拉斯是最早研究完全數(shù)的人,他已經(jīng)知道6和28是完全數(shù)。畢達(dá)哥拉斯曾說:“6象征著完滿的婚姻以及健康和美麗,因?yàn)樗牟糠质峭暾,并且其和等于自身。”不過,或許印度人和希伯來人早就知道它們的存在了。有些《圣經(jīng)》注釋家認(rèn)為6和28是上帝創(chuàng)造世界時所用的基本數(shù)字,他們指出,創(chuàng)造世界花了六天,二十八天則是月亮繞地球一周的日數(shù)。圣·奧古斯丁說:6這個數(shù)本身就是完全的,并不因?yàn)樯系墼煳镉昧肆?事實(shí)恰恰相反,因?yàn)檫@個數(shù)是一個完全數(shù),所以上帝在六天之內(nèi)把一切事物都造好了。
4.完全數(shù)的性質(zhì):(1)它們都能寫成連續(xù)自然數(shù)之和
例如:
6=1+2+3
28=1+2+3+4+5+6+7
496=1+2+3+……+30+31
(2)每個都是調(diào)和數(shù)
它們的全部因數(shù)的倒數(shù)之和都是2,因此每個完全數(shù)都是調(diào)和數(shù)。
(3)可以表示成連續(xù)奇立方數(shù)之和
除6以外的完全數(shù),還可以表示成連續(xù)奇立方數(shù)之和。例如:
28=13+33
496=13+33+53+73
8128=13+33+53+……+153
33550336=13+33+53+……+1253+1273
(4)都可以表達(dá)為2的一些連續(xù)正整數(shù)次冪之和
5.完全數(shù)都是以6或8結(jié)尾:
如果以8結(jié)尾,那么就肯定是以28結(jié)尾。
6.各位數(shù)字相加直到變成個位數(shù)則一定是1.
除6以外的完全數(shù),把它的各位數(shù)字相加,直到變成個位數(shù),那么這個個位數(shù)一定是1.(亦即:除6以外的完全數(shù),被9除都余1)
7.與質(zhì)數(shù)有關(guān)的猜想:
(1)哥德巴赫猜想
哥德巴赫猜想大致可以分為兩個猜想(前者稱“強(qiáng)”或“二重哥德巴赫猜想”后者稱“弱”或“三重哥德巴赫猜想”):1、每個不小于6的偶數(shù)都可以表示為兩個奇素?cái)?shù)之和;2、每個不小于9的奇數(shù)都可以表示為三個奇素?cái)?shù)之和。
(2)黎曼猜想
黎曼猜想是一個困擾數(shù)學(xué)界多年的難題,最早由德國數(shù)學(xué)家波恩哈德·黎曼提出,迄今為止仍未有人給出一個令人完全信服的合理證明。即如何證明“關(guān)于素?cái)?shù)的方程的所有意義的解都在一條直線上”。
此條質(zhì)數(shù)之規(guī)律內(nèi)的質(zhì)數(shù)月經(jīng)過整形,“關(guān)于素?cái)?shù)的方程的所有意義的解都在一條直線上”化為球體素?cái)?shù)分布。
(3)孿生素?cái)?shù)猜想
1849年,波林那克提出孿生素?cái)?shù)猜想,即猜測存在無窮多對孿生素?cái)?shù)。
猜想中的“孿生素?cái)?shù)”是指一對素?cái)?shù),它們之間相差2.例如3和5,5和7,11和13,10016957和10016959等等都是孿生素?cái)?shù)。
8.分?jǐn)?shù)由來:
分?jǐn)?shù)在我們中國很早就有了,最初分?jǐn)?shù)的表現(xiàn)形式跟現(xiàn)在不一樣。后來,印度出現(xiàn)了和我國相似的分?jǐn)?shù)表示法。再往后,阿拉伯人發(fā)明了分?jǐn)?shù)線,分?jǐn)?shù)的表示法就成為現(xiàn)在這樣了。
200多年前,瑞士數(shù)學(xué)家歐拉,在《通用算術(shù)》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因?yàn)檎也坏揭粋合適的數(shù)來表示它。如果我們把它分成三等份,每份是7/3米,像7/3就是一種新的數(shù),我們把它叫做分?jǐn)?shù)。
9.分?jǐn)?shù)乘除法:
(1)分?jǐn)?shù)乘整數(shù),分母不變,分子乘整數(shù),最后要化成最簡分?jǐn)?shù)。
(2)分?jǐn)?shù)乘分?jǐn)?shù),用分子乘分子,用分母乘分母,最后要化成最簡分?jǐn)?shù)。
(3)分?jǐn)?shù)除以整數(shù),分母不變,如果分子是整數(shù)的倍數(shù),則用分子除以整數(shù),最后要化成最簡分?jǐn)?shù)。
(4)分?jǐn)?shù)除以整數(shù),分母不變,如果分子不是整數(shù)的倍數(shù),則用這個分?jǐn)?shù)乘這個整數(shù)的倒數(shù),最后要化成最簡分?jǐn)?shù)。
(5)分?jǐn)?shù)除以分?jǐn)?shù),等于被除數(shù)乘除數(shù)的倒數(shù),最后不是最簡分?jǐn)?shù)要化成最簡分?jǐn)?shù)
五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)2
第一單元小數(shù)乘法
1、小數(shù)乘整數(shù):
@意義——求幾個相同加數(shù)的和的簡便運(yùn)算。
如:1.5×3表示求3個1.5的和的簡便運(yùn)算(或1.5的3倍是多少)。
@計(jì)算方法:先把小數(shù)擴(kuò)大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點(diǎn)上小數(shù)點(diǎn)。
2、小數(shù)乘小數(shù):
@意義——就是求這個數(shù)的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@計(jì)算方法:先把小數(shù)擴(kuò)大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點(diǎn)上小數(shù)點(diǎn)。
注意:按整數(shù)算出積后,小數(shù)末尾的0要去掉,也就是把小數(shù)化簡;位數(shù)不夠時,要用0占位。
3、規(guī)律:
一個數(shù)(0除外)乘大于1的數(shù),積比原來的數(shù)大;
一個數(shù)(0除外)乘小于1的數(shù),積比原來的數(shù)小。
4、求近似數(shù)的方法一般有三種:
、潘纳嵛迦敕ǎ
、七M(jìn)一法;
⑶去尾法
5、計(jì)算錢數(shù),保留兩位小數(shù),表示計(jì)算到分;保留一位小數(shù),表示計(jì)算到角。
6、小數(shù)四則運(yùn)算順序和運(yùn)算定律跟整數(shù)是一樣的。
7、運(yùn)算定律和性質(zhì):
@ 加法:
加法交換律:a+b=b+a
加法結(jié)合律:(a+b)+c=a+(b+c)
@ 減法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交換律:a×b=b×a
乘法結(jié)合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二單元位置
1、數(shù)對:由兩個數(shù)組成,中間用逗號隔開,用括號括起來。括號里面的數(shù)由左至右分別為列數(shù)和行數(shù),即“先列后行”。
2、作用:一組數(shù)對確定唯一 一個點(diǎn)的位置。經(jīng)度和緯度就是這個原理。 例:在方格圖(平面直角坐標(biāo)系)中用數(shù)對(3,5)表示(第三列,第五行)。 注:(1)在平面直角坐標(biāo)系中X軸上的坐標(biāo)表示列,y軸上的坐標(biāo)表示行。如:數(shù)對(3,2)表示第三列,第二行。
。2)數(shù)對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數(shù)不確定,不能確定一個點(diǎn))
2、圖形左右平移行數(shù)不變;圖形上下平移列數(shù)不變。
第三單元小數(shù)除法
1、小數(shù)除法的意義:已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運(yùn)算。
如:0.6÷0.3表示已知兩個因數(shù)的積0.6與其中的一個因數(shù)0.3,求另一個因數(shù)的運(yùn)算。
2、小數(shù)除以整數(shù)的計(jì)算方法:小數(shù)除以整數(shù),按整數(shù)除法的方法去除。商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對齊。整數(shù)部分不夠除,商0,點(diǎn)上小數(shù)點(diǎn)。如果有余數(shù),要添0再除。
3、除數(shù)是小數(shù)的'除法的計(jì)算方法:先將除數(shù)和被除數(shù)擴(kuò)大相同的倍數(shù),使除數(shù)變成整數(shù),再按“除數(shù)是整數(shù)的小數(shù)除法”的法則進(jìn)行計(jì)算。
注意:如果被除數(shù)的位數(shù)不夠,在被除數(shù)的末尾用0補(bǔ)足。
4、在實(shí)際應(yīng)用中,小數(shù)除法所
得的商也可以根據(jù)需要用“四舍五入”法保留一定的小數(shù)位數(shù),求出商的近似數(shù)。
5、除法中的變化規(guī)律:
、偕滩蛔儯罕怀龜(shù)和除數(shù)同時擴(kuò)大或縮小相同的倍數(shù)(0除外),商不變。
、诔龜(shù)不變,被除數(shù)擴(kuò)大,商隨著擴(kuò)大。
、郾怀龜(shù)不變,除數(shù)縮小,商擴(kuò)大。
6、循環(huán)小數(shù):一個數(shù)的小數(shù)部分,從某一位起,一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。
@ 循環(huán)節(jié):一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字。如
6.3232的循環(huán)節(jié)是32.
7、小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。小數(shù)部分的位數(shù)是無限的小數(shù),叫做無限小數(shù)。
第四單元可能性
1、有些事件的發(fā)生是確定的,有些是不確定的。 可能
可能性不可能(確定)
一定
2、事件發(fā)生的機(jī)會(或概率)有大小。
大數(shù)量多
小數(shù)量少
五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)4
數(shù)的整除:
1、能被15整除的數(shù)一定還能被( 1、3、5 )整除。[寫出所有可能]
2、從0、2、3、7、8中選出四個不同的數(shù)字,組成一個有因數(shù)2、3、5的四位數(shù),其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7兩種可能
3、六個連續(xù)偶數(shù)的和是210,這六個偶數(shù)是( 30、32、34、36、38、40 )。
4、在15、19、27、35、51、91這六個數(shù)中,與眾不同的數(shù)是( 19 ),因?yàn)? 只有19是質(zhì)數(shù),其它都是合數(shù) )。
5、兩個質(zhì)數(shù)的積是46,這兩個質(zhì)數(shù)的和是( 25 )。
解:因?yàn)?6是偶數(shù),因此它必是一個奇質(zhì)數(shù)與一個偶質(zhì)數(shù)的積,而偶質(zhì)數(shù)只有2,另一個質(zhì)數(shù)為46÷2=23,所以2與23的和是25。
6、1992所有的質(zhì)因數(shù)的和是( 88 )。
解:1992=2 2 2 3 83,所以1992所有的質(zhì)因數(shù)的和是2+2+2+3+83=92。
7、有兩個數(shù)都是合數(shù),又是互質(zhì)數(shù),它們的最小公倍數(shù)是90,這兩個數(shù)是( 9和10 )。
8、幾個數(shù)的最大公因數(shù)是最小公倍數(shù)的( 因 )數(shù),幾個數(shù)的最小公倍數(shù)是最大公因數(shù)的( 倍 )數(shù)。
9、幾個數(shù)的( 最大公因 )數(shù)的所有( 因 )數(shù),都是這幾個數(shù)的公因數(shù);幾個數(shù)的( 最小公倍 )數(shù)的所有( 倍 )數(shù),都是這幾個數(shù)的公倍數(shù)。
10、A、B、C都是非零自然數(shù),且A÷B=C,那么A和B的最小公倍數(shù)是( A ),最大公因數(shù)是( B ),C是( A )的因數(shù),A是B的(倍 )數(shù)。
11、甲數(shù)=2×3×5×A,乙數(shù)=2×3×7×A。如果甲、乙兩數(shù)的最大公因數(shù)是30,A應(yīng)該是( 5 );如果甲、乙兩數(shù)的最小公倍數(shù)是630,A應(yīng)該是( 3 )。
12、自然數(shù)A=B-1,A、B都是非零自然數(shù),A和B的最大公因數(shù)是( 1 ),最小公倍數(shù)( AB )。
13、長180厘米,寬45厘米,高18厘米的木料,至少能鋸成不余料的同樣大小的正方體木塊多少塊?
解:180、45、18的最大公因數(shù)是9,當(dāng)鋸成的正方體木塊的棱長是9厘米時,鋸出的正方體木塊塊數(shù)最少,是(180÷9)×(45÷9)×(18÷9)=20×5×2=200塊。
14、用長是9厘米、寬是6厘米、高是7厘米的長方體木塊疊成一個正方體,至少需要這種長方體木塊多少塊?
解:9、6、7的最小公倍數(shù)是126,即疊成的正方體棱長最小是126厘米,至少需要(126÷9)×(126÷6)×(126÷7)=14×21×18=5292塊這樣的長方體木塊才能疊成一個正方體。
15、同學(xué)們進(jìn)行隊(duì)列訓(xùn)練,如果每排8人,最后一排6人;如果每排10人,最后一排少4人。參加隊(duì)列訓(xùn)練的學(xué)生最少有多少人?
解:根據(jù)題意,學(xué)生人數(shù)除以8余6,除以10也余6,所以是8和10的最小公倍數(shù)40的倍數(shù)加6,學(xué)生最少是40+6=46人。
16、小紅、小蘭、小剛和小華,他們的年齡恰好一個比一個大一歲,他們的年齡相乘的積是5040。那么,小紅、小蘭、小剛和小華各是多少歲?
解:5040=2×2×2×2×3×3×5×7=7×(2×2×2)×(3×3)×(2×5),分別是7、8、9、10歲。
長方體和正方體:
17、寫出長方體的側(cè)面積計(jì)算公式:長方體的側(cè)面積=( )×( )。
18、一個正方體的棱長擴(kuò)大到原來的3倍,則這個正方體的.表面積擴(kuò)大到原來的( 9 )倍,體積擴(kuò)大到原來的( 27 )倍。
19、用若干個完全一樣的小正方體,拼成一個較大的正方體,至少需這樣的小正方體( 8 )個,此時所拼成的較大正方體的表面積是原來每個小正方體表面積的( (2×2×6)÷(1×1×6)=4 )倍。
20、一個底面是正方形的長方體,高2分米,側(cè)面展開后恰好是一個正方形。這個長方體的體積是多少立方分米?
解:長和寬都是2÷4=0.5分米,體積0.5×0.5×2=0.5立方分米。
21、一間教室長8米,寬6米,高4米,教室里有32個學(xué)生,平均每人占有多少空間?
解:8×6×4=192立方米,192÷32=6立方米。
22、一個無蓋的木盒,從外面量長10厘米,寬8厘米,高5厘米,木板厚1厘米。這個木盒的容積是多少?
解:長10-1×2=8厘米,寬8-1×2=6厘米,高5-1=4厘米,容積8×6×4=192立方厘米。
23、把一個長、寬、高分別是5分米、3分米、2分米的長方體截成兩個小長方體,這兩個小長方體表面積之和最大是( )平方分米。
解:原長方體的表面積是5×3×2+5×2×2+3×2×2=62平方分米,截成兩個小長方體后表面積最多增加5×3×2=30平方分米,這兩個小長方體表面積之和最大是62+30=92平方分米。
24、有一個長方體,如果把它的長減少2分米,那么它就變成一個正方體,表面積就會減少48平方分米。求這個長方體的體積。
解:橫截面是正方形,即寬與高相等。長方體的寬與高都是48÷4÷2=6分米,長是6+2=8分米,體積是8×6×6=288立方分米。
25、把一個棱長6厘米的正方體切成棱長2厘米的小正方體,可以得到多少個小正方體?表面積增加了多少平方厘米?
解:切成了(6÷2)×(6÷2)×(6÷2)=27個小正方體,表面積增加了6×6×4×3=432平方厘米。
26、兩個完全一樣的正方體拼成一個長方體,長方體的表面積是40平方厘米,每個小正方體的表面積是多少平方厘米?
解:小正方體的一個面是40÷(5×2)=4平方厘米,每個小正方體的表面積是4×6=24平方厘米。
27、一個長方體玻璃容器,容器內(nèi)裝有6升水,這時水面高度是15厘米。把一個蘋果放入水中,這時容器內(nèi)水面的高度是16.5厘米。請你求出這個蘋果的體積。
解:6升=6000毫升,底面積是6000÷15=400平方厘米,蘋果的體積是400×(16.5-15)=600立方厘米。
分?jǐn)?shù)的意義和性質(zhì):
28、2 的分?jǐn)?shù)單位是( ),它有( 37 )個這樣的分?jǐn)?shù)單位,再加上( 23 )個這樣的分?jǐn)?shù)單位等于最小的合數(shù)。
29、有分母都是7的真分?jǐn)?shù)、假分?jǐn)?shù)和帶分?jǐn)?shù)各一個,它們的大小只差一個分?jǐn)?shù)單位。這三個分?jǐn)?shù)分別是( , ,1 )。
30、一個分?jǐn)?shù)的分子縮小到原來的 ,分母縮小到原來的 ,分?jǐn)?shù)的值就( 擴(kuò)大到原來的3倍 )。
31、一輛小汽車6分鐘行駛9千米,行駛1千米要( )分,1分鐘能行駛( 1.5 )千米。
32、 <<1,□里可以填的自然數(shù)有( )。[寫出所有可能]
解: < < ,5□=50、55、60,□=10、11、12。
33、某工廠有煤5噸,如果每天燒 噸,這些煤可燒( 5÷ =5÷0.2=25 )天;如果每天燒這些煤的 ,這些煤可燒( 5 )天。
34、五(1)班女生占全班人數(shù)的 ,那么,男生人數(shù)占全班人數(shù)的( ),女生人數(shù)比男生人數(shù)少( )。
【五年級下冊數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
小學(xué)數(shù)學(xué)五年級下冊數(shù)學(xué)知識點(diǎn)梳理07-16
人教版五年級數(shù)學(xué)下冊知識點(diǎn)復(fù)習(xí)06-03
最新五年級下冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)07-11
五年級下冊英語知識點(diǎn)總結(jié)歸納05-29
數(shù)學(xué)三年級下冊知識點(diǎn)總結(jié)10-15
2016年五年級數(shù)學(xué)下冊期中考試知識點(diǎn)總結(jié)09-02