考研數學高效復習的技巧
考生們在進行考研數學的高效復習時,當然少不了要掌握好技巧了。小編為大家精心準備了研數學高效復習的秘訣,歡迎大家前來閱讀。
考研數學高效復習的方法
結合幾何意義記住基本原理
重要的定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區(qū)間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
逆推法
從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。該題中可設F(x)=lnx-lna-4(x-a)/e*,其中eF(a)就是所要證的不等式。
考研搞定數學選擇題的方法
方法1:直推法
直推法即直接分析推導法。直推法是由條件出發(fā),運用相關知識,直接分析、推導或計算出結果,從而作出正確的判斷和選擇。計算類選擇題一般都用這種方法,其它題也常用這種方法,這是最基本、最常用、最重要的方法。
方法2:反推法
反推法即反向推導或反向代入法。反推法是由選項(即選擇題的各個選項)反推條件,與條件相矛盾的選項則排除,相吻合的則是正確選項,或者將某個或某幾個選項依次代入題設條件進行驗證分析,與題設條件相吻合的就是正確的選項。
方法3:反證法
在選擇題的4個選項中,若假設某個選項不正確(或正確)可以推出矛盾,則說明該選項是正確選項(或不正確選項)。選擇先從哪個選項著手證明,須根據題目條件具體分析和判斷,有時可能需要一些直覺。
方法4:反例法
如果某個選項是一個命題,要排除該選項或說明該命題是錯誤的,有時只要舉一個反例即可。舉反例通常是用一些常用的、比較簡單但又能說明問題的例子。如果大家在平時復習或做題時適當注意積累一下與各個知識點相關的不同反例,則在考試中可能會派上用場。
方法5:特例法(特值法)
如果題目是一個帶有普遍性的'命題,則可以嘗試采取一種或幾種特殊情況、特殊值去驗證哪些選項是正確的、哪些是錯誤的,或者哪些極有可能是正確的或錯誤的,從而做出正確的選擇。
特例法用于以下幾種情況時特別有效:(1)條件和結論帶有一定的普遍性時,通過取特例來確定或排除某些選項;(2)對于不成立或極有可能不成立的結論需用舉反例的方法證明其是錯誤時;(3)對于一些難以作出判斷的題,假設在特殊情況下來考察其正確與否。
方法6:數形結合法
根據條件畫出相應的幾何圖形,結合數學表達式和圖形進行分析,從而做出正確的判斷和選擇。這種方法常用于與幾何圖形有關的選擇題,如:定積分的幾何意義,二重積分的計算,曲線和曲面積分等。
方法7:排除法
如果可以通過一種或幾種方法排除4個選項中的3個,則剩下的那個當然就是正確的選項,或者先排除4個選項中的2個,然后再對其余的2個進行判斷和選擇。
方法8:直覺法
如果采用以上各種方法仍無法作出選擇,那就憑直覺或第一印象作選擇。雖然直覺法不是很可靠,但可以作為一種參考,況且人的直覺或第一印象有時還是有一定效果的。
在以上方法中,基本的方法是直推法,就是運用數學基本知識和方法進行分析判斷,從四個選項中找出符合要求的那個選項;排除法是對所有考試中做選擇題都適用的方法,是一種普遍性的方法;反例法是針對以數學命題作為選項的題目很有用和有效的一種方法,運用得當可以很快找出答案;數形結合法則是針對與幾何圖形有關的題目很有用的一種方法。
考研數學證明題的24個出題角度
1極限的四則運算法則
2極限的脫帽定理
3無窮小的定階定理
4函數連續(xù)性定理的證明
5函數奇偶性與周期性的證明
6費馬定理、柯西定理及牛頓萊布尼茨定理的證明
7洛必達法則證明
8函數凹凸性判定法則的證明
9不等式的證明與方程根的證明
10含有一個中值或者兩個中值的證明
11關于定積分等式與不等式的證明
12定積分重要性質與結論的證明
13曲線積分與路徑無關性的證明(數學一)
14格林公式與高斯定理的證明(數學一)
15證明常數項級數的收斂性
16矩陣秩的相關證明
17證明向量小組線性無關
18證明方程組的基礎解系及性質
19證明兩個矩陣相似與合同的方法
20證明矩陣是正定矩陣的方法
21證明函數為隨機變量的分布函數的方法
22證明兩個隨機變量相互獨立與不相關
23證明一個統(tǒng)計量服從卡方分布、t分布及F分布
24證明一個估計量為無偏估計!
【考研數學高效復習的技巧】相關文章:
考研數學高效復習的意見12-18
考研數學高效復習的原則11-24
考研數學高效復習的建議11-29
小學數學的高效復習技巧06-30
考研數學復習技巧06-30
考研數學備考高效復習的方法12-22
考研備考晚上高效復習的技巧12-29
小學數學高效復習技巧解讀06-30
考研數學復習技巧指導06-30