- 相關(guān)推薦
小升初數(shù)學應(yīng)用題復(fù)習綜合訓練題
1. 一個四位數(shù)除以119余96,除以120余80.求這四位數(shù).
解:用盈虧問題的思想來解答。
商是(96-80)÷(120-119)=16,所以被除數(shù)是120×16+80=2000。
2. 有四個不同的自然數(shù),其中任意兩個數(shù)之和是2的倍數(shù),任意三個數(shù)的和是3的倍數(shù),求滿足條件的最小的四個自然數(shù).
解:任意兩個數(shù)之和是2的倍數(shù),說明這些數(shù)全部是偶數(shù)或者全部是奇數(shù)。 任意三個數(shù)的和是3的倍數(shù),說明這些數(shù)除以3的余數(shù)相同。
要滿足條件的最小自然數(shù),因為0是自然數(shù)了。所以我認為結(jié)果是0、6、12、18。
3. 在一環(huán)形跑道上,甲從A點,乙從B點同時出發(fā)反向而行,6分鐘后兩人相遇,再過4分鐘甲到達B點,又過8分鐘兩人再次相遇.甲、乙環(huán)行一周各需要多少分鐘?
解:甲乙合行一圈需要8+4=12分鐘。乙行6分鐘的路程,甲只需4分鐘。 所以乙行的12分鐘,甲需要12÷6×4=8分鐘,所以甲行一圈需要8+12=20分鐘。乙行一圈需要20÷4×6=30分鐘。
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8點經(jīng)過郵局,乙上午10點經(jīng)過郵局,問甲、乙在中途何時相遇?
解:我們把乙行1小時的路程看作1份,
那么上午8時,甲乙相距10-8=2份。
所以相遇時,乙行了2÷(1+1.5)=0.8份,0.8×60=48分鐘,
所以在8點48分相遇。
【小升初數(shù)學應(yīng)用題復(fù)習綜合訓練題】相關(guān)文章:
小學數(shù)學應(yīng)用題綜合訓練18題10-06
小學數(shù)學應(yīng)用題綜合訓練(10)06-25
小學應(yīng)用題綜合訓練10-20
數(shù)學應(yīng)用題專項訓練小學數(shù)學復(fù)習資料10-21
小學數(shù)學應(yīng)用題總復(fù)習09-11
小學數(shù)學應(yīng)用題復(fù)習課05-07