小升初數(shù)學(xué)必考知識點
在平日的學(xué)習(xí)中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點也可以通俗的理解為重要的內(nèi)容。那么,都有哪些知識點呢?以下是小編為大家收集的小升初數(shù)學(xué)必考知識點,僅供參考,希望能夠幫助到大家。
小升初數(shù)學(xué)必考知識點1
比和比例
1.比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。
比例的意義:表示兩個比相等的式子叫做比例。
2.求比值:比的前項除以比的后項所得的商叫做比值。
3.比的基本性質(zhì):比的前項和后項都乘或除以相同的數(shù)(0除外),比值不變。
比例的基本性質(zhì):在比例里,兩個外項的積等于兩個內(nèi)項的積。
4.應(yīng)用比的基本性質(zhì)可以化簡比;
應(yīng)用比例的基本性質(zhì)可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分?jǐn)?shù)的關(guān)系。
a:b=a÷b=(b≠0)
6.比例尺:我們把圖上距離和實際距離的.比,叫做這幅圖的比例尺。
7.圖上距離:實際距離=比例尺
或=比例尺
實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
8.求比值的方法:根據(jù)比值的意義,用前項除以后項,結(jié)果是一個數(shù)。
化簡比的方法:根據(jù)比的基本性質(zhì),把比的前項和后項都乘或除以相同的數(shù)(零除外),結(jié)果是一個最簡整數(shù)比。
9.正比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。
用式子表示:=k(一定),用圖表示正比例關(guān)系是一條直線。
10.反比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。
用式子表示:x×y=k(一定),用圖表示反比例關(guān)系是一條曲線。
小升初數(shù)學(xué)必考知識點2
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進(jìn)率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進(jìn)率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進(jìn)率。
質(zhì)量單位有:噸、千克、克,寫出它們之間的進(jìn)率。
時間單位有:世紀(jì)、年、月、日、時、分、秒,寫出它們之間的進(jìn)率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。
小月有:4、6、9、11月,共4個,每月30天。 二月平年是28天,閏年是29天。
3.一年有4個季度,每個季度3個月。
4.平年閏年:公歷年份是4的倍數(shù)的一般是閏年,公歷年份是整百數(shù)的',必須是400的倍數(shù)才是閏年。
5.名數(shù):把計量得到的數(shù)和單位名稱合起來叫做名數(shù)。
單名數(shù):只帶有一個單位名稱的叫做單名數(shù)。
復(fù)名數(shù):帶有兩個或兩個以上單位名稱的叫做復(fù)名數(shù)。
6.名數(shù)的改寫:高級單位的名數(shù)化成低級單位的名數(shù)乘進(jìn)率,低級單位的名數(shù)化成高級單位的名數(shù)除以進(jìn)率。
小升初數(shù)學(xué)必考知識點3
一.整數(shù)和小數(shù)
1.最小的一位數(shù)是1,最小的自然數(shù)是0
2.小數(shù)的意義:把整數(shù)“1”平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數(shù)來表示。
3.小數(shù)點左邊依次是整數(shù)部分,小數(shù)點右邊是小數(shù)部分,依次是十分位、百分位、千分位……
4.小數(shù)的分類:小數(shù) 有限小數(shù)
無限循環(huán)小數(shù)
無限小數(shù)
無限不循環(huán)小數(shù)
5.整數(shù)和小數(shù)都是按照十進(jìn)制計數(shù)法寫出的數(shù)。
6.小數(shù)的性質(zhì):小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。
7.小數(shù)點向右移動一位、二位、三位……原來的數(shù)分別擴大10倍、100倍、1000倍……
小數(shù)點向左移動一位、二位、三位……原來的數(shù)分別縮小10倍、100倍、1000倍……
二.?dāng)?shù)的整除
1.整除:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
一個數(shù)約數(shù)的個數(shù)是有限的',最小的約數(shù)是1,最大的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質(zhì)數(shù)、合數(shù)三類。
質(zhì)數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)。質(zhì)數(shù)都有2個約數(shù)。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4
1~20以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19
1~20以內(nèi)的合數(shù)有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。
小升初數(shù)學(xué)必考知識點4
1.和差倍問題
和差問題 和倍問題 差倍問題
已知條件 幾個數(shù)的和與差 幾個數(shù)的和與倍數(shù) 幾個數(shù)的差與倍數(shù)
公式適用范圍 已知兩個數(shù)的和,差,倍數(shù)關(guān)系
公式 ①(和-差)2=較小數(shù)
較小數(shù)+差=較大數(shù)
和-較小數(shù)=較大數(shù)
、(和+差)2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和(倍數(shù)+1)=小數(shù)
小數(shù)倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差(倍數(shù)-1)=小數(shù)
小數(shù)倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
關(guān)鍵問題 求出同一條件下的
和與差 和與倍數(shù) 差與倍數(shù)
2.年齡問題的三個基本特征:
、賰蓚人的年齡差是不變的;
、趦蓚人的年齡是同時增加或者同時減少的;
③兩個人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問題的基本特點:問題中有一個不變的量,一般是那個單一量,題目一般用照這樣的速度等詞語來表示。
關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;
4.植樹問題
基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 封閉曲線上植樹
基本公式 棵數(shù)=段數(shù)+1
棵距段數(shù)=總長 棵數(shù)=段數(shù)-1
棵距段數(shù)=總長 棵數(shù)=段數(shù)
棵距段數(shù)=總長
關(guān)鍵問題 確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;
、勖總事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;
、茉俑鶕(jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù))
、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
6.盈虧問題
基本概念:一定量的對象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭?
基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量.
基本題型:
、僖淮斡杏鄶(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))兩次每份數(shù)的差
、诋(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差
、郛(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差
基本特點:對象總量和總的組數(shù)是不變的。
關(guān)鍵問題:確定對象總量和總的組數(shù)。
7.牛吃草問題
基本思路:假設(shè)每頭牛吃草的速度為1份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關(guān)鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間長時間牛頭數(shù)-較短時間短時間牛頭數(shù))(長時間-短時間);
總草量=較長時間長時間牛頭數(shù)-較長時間生長量;
8.周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。
關(guān)鍵問題:確定循環(huán)周期。
閏 年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
、倌攴莶荒鼙4整除;②如果年份能被100整除,但不能被400整除;
9.平均數(shù)
基本公式:①平均數(shù)=總數(shù)量總份數(shù)
總數(shù)量=平均數(shù)總份數(shù)
總份數(shù)=總數(shù)量平均數(shù)
、谄骄鶖(shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和總份數(shù)
基本算法:
、偾蟪隹倲(shù)量以及總份數(shù),利用基本公式①進(jìn)行計算.
、诨鶞(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差; 再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②。
10.抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:
、4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中nm,那么必有一個抽屜至少有:
①k=[n/m ]+1個物體:當(dāng)n不能被m整除時。
②k=n/m個物體:當(dāng)n能被m整除時。
理解知識點:[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運算。
11.定義新運算
基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。
基本思路:嚴(yán)格按照新定義的運算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運算,然后按照基本運算過程、規(guī)律進(jìn)行運算。
關(guān)鍵問題:正確理解定義的運算符號的意義。
注意事項:①新的運算不一定符合運算規(guī)律,特別注意運算順序。
、诿總新定義的運算符號只能在本題中使用。
12.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個量:a1 ,an, d, n,sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數(shù)一1) 公差;
數(shù)列和公式:sn,= (a1+ an)n
數(shù)列和=(首項+末項)項數(shù)
項數(shù)公式:n= (an+ a1)
項數(shù)=(末項-首項)公差+1;
公差公式:d =(an-a1))(n-1);
公差=(末項-首項)(項數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
13.二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7++A3102+A2101+A1100
注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7
++A322+A221+A120
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點,用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
②先找出不大于該數(shù)的2的`n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點即可寫出。
14.加法乘法原理和幾何計數(shù)
加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1m2....... mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。
直線特點:沒有端點,沒有長度。
線段:直線上任意兩點間的距離。這兩點叫端點。
線段特點:有兩個端點,有長度。
射線:把直線的一端無限延長。
射線特點:只有一個端點;沒有長度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3++(點數(shù)一1);
、跀(shù)角規(guī)律=1+2+3++(射線數(shù)一1);
、蹟(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)寬的線段數(shù):
、軘(shù)長方形規(guī)律:個數(shù)=11+22+33++行數(shù)列數(shù)
15.質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。
合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1 p
求約數(shù)個數(shù)的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)
互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。
16.約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì):
1、 幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。
2、 幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。
3、 幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。
4、 幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法:
1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。
2、短除法:先找公有的約數(shù),然后相乘。
3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。
公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48
18的倍數(shù)有:18、36、54、72
那么12和18的公倍數(shù)有:36、72、108
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì):
1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。
求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
17.數(shù)的整除
一、基本概念和符號:
1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號|,不能整除符號因為符號∵,所以的符號
二、整除判斷方法:
1. 能被2、5整除:末位上的數(shù)字能被2、5整除。
2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
4. 能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。
5. 能被7整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。
、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的2倍后能被7整除。
6. 能被11整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
、谄鏀(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
③逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。
7. 能被13整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的9倍后能被13整除。
三、整除的性質(zhì):
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
18.余數(shù)及其應(yīng)用
基本概念:對任意自然數(shù)a、b、q、r,如果使得ab=qr,且0
余數(shù)的性質(zhì):
、儆鄶(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
19.余數(shù)、同余與周期
一、同余的定義:
、偃魞蓚整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。
、谝阎齻整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作ab(mod m),讀作a同余于b模m。
二、同余的性質(zhì):
、僮陨硇裕篴a(mod m);
、趯ΨQ性:若ab(mod m),則ba(mod m);
、蹅鬟f性:若ab(mod m),bc(mod m),則a c(mod m);
④和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);
、菹喑诵裕喝鬭 b(mod m),cd(mod m),則ac bd(mod m);
、蕹朔叫裕喝鬭b(mod m),則anbn(mod m);
⑦同倍性:若a b(mod m),整數(shù)c,則ac bc(mod m
三、關(guān)于乘方的預(yù)備知識:
、偃鬉=ab,則MA=Mab=(Ma)b
、谌鬊=c+d則MB=Mc+d=McMd
四、被3、9、11除后的余數(shù)特征:
、僖粋自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);
、谝粋自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。
20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用
基本概念與性質(zhì):
分?jǐn)?shù):把單位1平均分成幾份,表示這樣的一份或幾份的數(shù)。
分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
分?jǐn)?shù)單位:把單位1平均分成幾份,表示這樣一份的數(shù)。
百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。
、趯(yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。
、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。
、芗僭O(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。
、萘坎蛔兯季S方法:在變化的各個量當(dāng)中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。
、酀舛扰浔确ǎ阂话銘(yīng)用于總量和分量都發(fā)生變化的狀況。
21.分?jǐn)?shù)大小的比較
基本方法:
、偻ǚ址肿臃ǎ菏顾蟹?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。
、谕ǚ址帜阜ǎ菏顾蟹?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。
、刍鶞(zhǔn)數(shù)法:確定一個標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。
、芊肿雍头帜复笮”容^法:當(dāng)分子和分母的差一定時,分子或分母越大的分?jǐn)?shù)值越大。
⑤倍率比較法:當(dāng)比較兩個分子或分母同時變化時分?jǐn)?shù)的大小,除了運用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運用見同倍率變化規(guī)律)
、揶D(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。
、弑稊(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進(jìn)行比較。
⑧大小比較法:用一個分?jǐn)?shù)減去另一個分?jǐn)?shù),得出的數(shù)和0比較。
、岬箶(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。
、饣鶞(zhǔn)數(shù)比較法:確定一個基準(zhǔn)數(shù),每一個數(shù)與基準(zhǔn)數(shù)比較。
22.分?jǐn)?shù)拆分
一、 將一個分?jǐn)?shù)單位分解成兩個分?jǐn)?shù)之和的公式:
、 =+;
②=+(d為自然數(shù));
23.完全平方數(shù)
完全平方數(shù)特征:
1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 約數(shù)個數(shù)為奇數(shù);反之成立。
5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。
6. 奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。
7. 兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。
比值:比的前項除以后項的商,叫做比值。
比的性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。
比例:表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質(zhì):兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。
正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:圖上距離與實際距離的比叫做比例尺。
按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。
25.綜合行程
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關(guān)系.
基本公式:路程=速度時間;路程時間=速度;路程速度=時間
關(guān)鍵問題:確定運動過程中的位置和方向。
相遇問題:速度和相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差速度差(寫出其他公式)
流水問題:順?biāo)谐?(船速+水速)順?biāo)畷r間
逆水行程=(船速-水速)逆水時間
順?biāo)俣?船速+水速
逆水速度=船速-水速
靜水速度=(順?biāo)俣?逆水速度)2
水 速=(順?biāo)俣?逆水速度)2
流水問題:關(guān)鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關(guān)鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
26.工程問題
基本公式:
、俟ぷ骺偭=工作效率工作時間
、诠ぷ餍=工作總量工作時間
、酃ぷ鲿r間=工作總量工作效率
基本思路:
、偌僭O(shè)工作總量為1(和總工作量無關(guān));
、诩僭O(shè)一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關(guān)系,可以簡單地表示出工作效率及工作時間.
關(guān)鍵問題:確定工作量、工作時間、工作效率間的兩兩對應(yīng)關(guān)系。
經(jīng)驗簡評:合久必分,分久必合。
27.邏輯推理
基本方法簡介:
、贄l件分析假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。
、跅l件分析列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設(shè)情況,運用邏輯規(guī)律進(jìn)行判斷。
、蹢l件分析圖表法:當(dāng)兩個對象之間只有兩種關(guān)系時,就可用連線表示兩個對象之間的關(guān)系,有連線則表示是,有等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識或不認(rèn)識兩種狀態(tài),有連線表示認(rèn)識,沒有表示不認(rèn)識。
、苓壿嬘嬎悖涸谕评淼倪^程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。
、莺唵螝w納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。
28.幾何面積
基本思路:
在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進(jìn)行割補,平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。
常用方法:
1. 連輔助線方法
2. 利用等底等高的兩個三角形面積相等。
3. 大膽假設(shè)(有些點的設(shè)置題目中說的是任意點,解題時可把任意點設(shè)置在特殊位置上)。
4. 利用特殊規(guī)律
、俚妊苯侨切,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)
②梯形對角線連線后,兩腰部分面積相等。
、蹐A的面積占外接正方形面積的78.5%。
29.立體圖形
名稱 圖形 特征 表面積 體積
長方體
8個頂點;6個面;相對的面相等;12條棱;相對的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正方體
8個頂點;6個面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3
圓柱體
上下兩底是平行且相等的圓;側(cè)面展開后是長方形; S=S側(cè)+2S底
S側(cè)=Ch V=Sh
圓錐體
下底是圓;只有一個頂點;l:母線,頂點到底圓周上任意一點的距離; S=S側(cè)+S底
S側(cè)=rl V=Sh
球
體 圓心到圓周上任意一點的距離是球的半徑。 S=4r2 V=r3
30.時鐘問題快慢表問題
基本思路:
1、 按照行程問題中的思維方法解題;
2、 不同的表當(dāng)成速度不同的運動物體;
3、 路程的單位是分格(表一周為60分格);
4、 時間是標(biāo)準(zhǔn)表所經(jīng)過的時間;
小升初數(shù)學(xué)必考知識點5
數(shù)的整除
1.整除:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
一個數(shù)約數(shù)的個數(shù)是有限的,最小的.約數(shù)是1,最大的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質(zhì)數(shù)、合數(shù)三類。
質(zhì)數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)。質(zhì)數(shù)都有2個約數(shù)。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4
1~20以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19
1~20以內(nèi)的合數(shù)有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。
能被3整除的數(shù)的特征:一個數(shù)的各位上 數(shù)的和能被3整除,這個數(shù)就能被3整除。
7.質(zhì)因數(shù):如果一個自然數(shù)的因數(shù)是質(zhì)數(shù),這個因數(shù)就叫做這個自然數(shù)的質(zhì)因數(shù)。
8.分解質(zhì)因數(shù):把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
9.公約數(shù)、公倍數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
10.一般關(guān)系的兩個數(shù)的最大公約數(shù)、最小公倍數(shù)用短除法來求;互質(zhì)關(guān)系的兩個數(shù)最大公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關(guān)系的兩個數(shù)的最大公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。
11.互質(zhì)數(shù):公約數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù)。
12.兩數(shù)之積等于最小公倍數(shù)和最大公約數(shù)的積。
小升初數(shù)學(xué)必考知識點6
(一)數(shù)的讀法和寫法
1. 整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個億或萬字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。
2. 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。
3. 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作點,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。
4. 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。
5. 分?jǐn)?shù)的讀法:讀分?jǐn)?shù)時,先讀分母再讀分之然后讀分子,分子和分母按照整數(shù)的讀法來讀。
6. 分?jǐn)?shù)的寫法:先寫分?jǐn)?shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。
7. 百分?jǐn)?shù)的讀法:讀百分?jǐn)?shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。
8. 百分?jǐn)?shù)的寫法:百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而在原來的分子后面加上百分號%來表示。
(二)數(shù)的改寫
一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用萬或億作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。
1. 準(zhǔn)確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準(zhǔn)確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。
2. 近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。
3. 四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4 或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進(jìn)1。例如:省略 345900 萬后面的'尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù)約是 47 億。
4. 大小比較
1. 比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。
2. 比較小數(shù)的大小:先看它們的整數(shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大
3. 比較分?jǐn)?shù)的大小:分母相同的分?jǐn)?shù),分子大的分?jǐn)?shù)比較大;分子相同的數(shù),分母小的分?jǐn)?shù)大。分?jǐn)?shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。
(三)數(shù)的互化
1. 小數(shù)化成分?jǐn)?shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。
2. 分?jǐn)?shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。
3. 一個最簡分?jǐn)?shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分?jǐn)?shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個分?jǐn)?shù)就不能化成有限小數(shù)。
4. 小數(shù)化成百分?jǐn)?shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。
5. 百分?jǐn)?shù)化成小數(shù):把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。
6. 分?jǐn)?shù)化成百分?jǐn)?shù):通常先把分?jǐn)?shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。
7. 百分?jǐn)?shù)化成小數(shù):先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。
(四)數(shù)的整除
1. 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。
2. 求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù)。
3. 求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。
4. 成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì);相鄰的兩個自然數(shù)互質(zhì); 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì);兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì)。
(五)約分和通分
約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分?jǐn)?shù)為止。
通分的方法:先求出原來的幾個分?jǐn)?shù)分母的最小公倍數(shù),然后把各分?jǐn)?shù)化成用這個最小公倍數(shù)作分母的分?jǐn)?shù)。
小升初數(shù)學(xué)必考知識點7
一、等式、方程與代數(shù)
1.等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。等式的基本性質(zhì):等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。
2.方程式:含有未知數(shù)的等式叫方程式。
3.一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。學(xué)會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
4.代數(shù): 代數(shù)就是用字母代替數(shù)。
5.代數(shù)式:用字母表示的式子叫做代數(shù)式。
如:3x =ab+c
二、數(shù)量關(guān)系計算公式
單價×數(shù)量=總價
單產(chǎn)量×數(shù)量=總產(chǎn)量
速度×?xí)r間=路程
工效×?xí)r間=工作總量
加數(shù)+加數(shù)=和
一個加數(shù)=和 - 另一個加數(shù)
被減數(shù)-減數(shù)=差
減數(shù)=被減數(shù)-差
被減數(shù)=減數(shù)+差
因數(shù)×因數(shù)=積
一個因數(shù)=積÷另一個因數(shù)
被除數(shù)÷除數(shù)=商
除數(shù)=被除數(shù)÷商
被除數(shù)=商×除數(shù)
三、表面積和體積
1.三角形的面積=底×高÷2。 公式 S= a×h÷2
2.正方形的'面積=邊長×邊長 公式 S= a2
3.長方形的面積=長×寬 公式 S= a×b
4.平行四邊形的面積=底×高 公式 S= a×h
5.梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6.內(nèi)角和:三角形的內(nèi)角和=180度。
7.長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
8.正方體的表面積=棱長×棱長×6 公式: S=6a2
9.長方體的體積=長×寬×高 公式:V = abh
10.長方體(或正方體)的體積=底面積×高 公式:V = abh
11.正方體的體積=棱長×棱長×棱長 公式:V = a3
12.圓的周長=直徑×π 公式:L=πd=2πr
13.圓的面積=半徑×半徑×π 公式:S=πr2
14.圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
15.圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
16.圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
17.圓錐的體積=1/3底面×積高。公式:V=1/3Sh
四、常用單位換算
1.長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2.面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
3.體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
4.重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
5.時間單位換算
1世紀(jì)=100年 1年=12月
大月(31天)有:18 月
小月(30天)的有:49月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天
1日=24小時 1時=60分 1分=60秒 1時=3600秒
五、數(shù)學(xué)常用公式
1.平均數(shù): 總數(shù)÷總份數(shù)=平均數(shù)
2.和差問題:(和+差)÷2=大數(shù) (和-差)÷2=小數(shù)
3.和倍問題:和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))
4.差倍問題:差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù))
5.相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間
6.追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間
7.流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
8.濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質(zhì)的重量
溶質(zhì)的重量÷濃度=溶液的重量
9.利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×?xí)r間
稅后利息=本金×利率×?xí)r間×(1-20%)
10、盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(shù) (大盈-小盈)÷兩次分配量之差=參加分配 的份數(shù) (大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)
1.圓周率常取數(shù)據(jù)
3.14×1=3.14
3.14×2=6.28
3.14×3=9.42
3.14×4=12.56
3.14×5=15.7
3.15×6=18.84
3.14×7=21.98
3.14×8=25.12
3.14×9=28.26
2.常用特殊數(shù)的乘積
25×3=75
25×4=100
25×8=200
125×3=375
125×4=500
125×8=1000
625×16=10000
37×3=111
3.常用平方數(shù)
112=121 122=144 132=169 142=196
152=225 162=256 172=289 182=324
192=361 102=100 202=400 302=900
402=1600 502=2500 602=3600 7702=4900
802=6400 152=225 252=625 352=1225
452=2025 552=3025 652=4225 752=5625
852=7225
4.關(guān)于常用分?jǐn)?shù)與小數(shù)的互化
1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4
3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625
7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35
9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08
3/25=0.12 4/25=0.16 6/25=0.24
5.常用立方數(shù)
13=1 23=8 33=27 43=64 53=125
63=216 73=343 83=512 93=729
小升初數(shù)學(xué)必考知識點8
分?jǐn)?shù)應(yīng)用題
1、知識點概述
分?jǐn)?shù)應(yīng)用題是研究數(shù)量之間份數(shù)關(guān)系的典型應(yīng)用題,包括三種類型:求一個數(shù)是另一個數(shù)的幾分之幾;求一個數(shù)的幾分之幾是多少;已知一個數(shù)的幾分之幾是多少,求這個數(shù)。
分?jǐn)?shù)應(yīng)用題一方面是在整數(shù)應(yīng)用題上的延續(xù)和深化,另一方面,它有其自身的特點和解題規(guī)律.在解這類問題時,分析中數(shù)量之間的關(guān)系,準(zhǔn)確找出“量”與“率”之間的對應(yīng)是解題的關(guān)鍵.
2、關(guān)鍵:分?jǐn)?shù)應(yīng)用題經(jīng)常要涉及到兩個或兩個以上的量,我們往往把其中的一個量看作是標(biāo)準(zhǔn)量.也稱為:單位“1”,例如a是b的幾分之幾,就把數(shù)b看作單位“1”.在幾個量中,弄清哪一個是單位“1”很重要,否則容易出錯誤.而百分?jǐn)?shù)應(yīng)用題中所涉及的百分?jǐn)?shù),只是分母是100的分?jǐn)?shù),因而計算的方法和分?jǐn)?shù)應(yīng)用題是一樣的,關(guān)鍵也是要找準(zhǔn)單位“1”和對應(yīng)的`百分率,以及對應(yīng)量三者的關(guān)系。
3、怎樣找準(zhǔn)分?jǐn)?shù)應(yīng)用題中單位“1”
(1)部分?jǐn)?shù)和總數(shù)
在同一整體中,部分?jǐn)?shù)和總數(shù)作比較關(guān)系時,部分?jǐn)?shù)通常作為比較量,而總數(shù)則作為標(biāo)準(zhǔn)量,那么總數(shù)就是單位“1”。
例如:我國人口約占世界人口的幾分之幾?——世界人口是總數(shù),我國人口是部分?jǐn)?shù),世界人口就是單位“1”。
解答題關(guān)鍵:只要找準(zhǔn)總數(shù)和部分?jǐn)?shù),確定單位“1”就很容易了。
(2)兩種數(shù)量比較
分?jǐn)?shù)應(yīng)用題中,兩種數(shù)量相比的關(guān)鍵句非常多。有的是“比”字句,有的則沒有“比”字,而是帶有指向性特征的“占”、“是”、“相當(dāng)于”。在含有“比”字的關(guān)鍵句中,比后面的那個數(shù)量通常就作為標(biāo)準(zhǔn)量,也就是單位“1”。
例如:六(2)班男生比女生多——就是以女生人數(shù)為標(biāo)準(zhǔn)(單位“1”),
解題關(guān)鍵:在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看“占”誰的,“相當(dāng)于”誰的,“是”誰的幾分之幾。這個“占”,“相當(dāng)于”,“是”后面的數(shù)量——誰就是單位“!”。
小升初數(shù)學(xué)必考知識點9
整數(shù)
1 .整數(shù)的意義
自然數(shù)和0都是整數(shù)。
2 .自然數(shù)
我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3叫做自然數(shù)。
一個物體也沒有,用0表示。0也是自然數(shù)。
3.計數(shù)單位 :一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。這樣的計數(shù)法叫做十進(jìn)制計數(shù)法。
4. 數(shù)位
計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。
5.數(shù)的整除
整數(shù)a除以整數(shù)b(b 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
如果數(shù)a能被數(shù)b(b 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。
一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。
一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3的倍數(shù)有:3、6、9、12其中最小的倍數(shù)是3 ,沒有最大的.倍數(shù)。
個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。
能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數(shù)叫做偶數(shù)。
不能被2整除的數(shù)叫做奇數(shù)。
0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。
一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。
1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。
每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=35,3和5 叫做15的質(zhì)因數(shù)。
把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
小升初數(shù)學(xué)必考知識點10
一、數(shù)與數(shù)字的區(qū)別
數(shù)字(也就是數(shù)碼),是用來記數(shù)的符號,通常用國際通用的阿拉伯?dāng)?shù)字 0~9這十個數(shù)字。其他還有中國小寫數(shù)字,大寫數(shù)字,羅馬數(shù)字等等。
數(shù)是由數(shù)字和數(shù)位組成。
1.0的意義:0既可以表示“沒有”,也可以作為某些數(shù)量的界限。如溫度等。0是一個完全有確定意義的數(shù)。0是最小的自然數(shù),是一個偶數(shù)。00是最小的自然數(shù),是一個偶數(shù)。是任何自然數(shù)(0除外)的倍數(shù)。0不能作除數(shù)。
2.自然數(shù):用來表示物體個數(shù)的0、1、2、3、4、5、6、7、8、9、10……叫做自然數(shù)。簡單說就是大于等于零的整數(shù)。
3.整數(shù): 自然數(shù)都是整數(shù),整數(shù)不都是自然數(shù)。
4.小數(shù):小數(shù)是特殊形式的分?jǐn)?shù),所有分?jǐn)?shù)都可以表示成小數(shù),小數(shù)中的圓點叫做小數(shù)點。但是不能說小數(shù)就是分?jǐn)?shù)。
5.混小數(shù)(帶小數(shù)):小數(shù)的整數(shù)部分不為零的小數(shù)叫混小數(shù),也叫帶小數(shù)。
5.純小數(shù):小數(shù)的.整數(shù)部分為零的小數(shù),叫做純小數(shù)。
7.有限小數(shù):小數(shù)的小數(shù)部分只有有限個數(shù)字的小數(shù)(不全為零)叫做有限小數(shù)。
8.無限小數(shù):小數(shù)的小數(shù)部分有無數(shù)個數(shù)字(不包含全為零)的小數(shù),叫做無限小數(shù)。循環(huán)小數(shù)都是無限小數(shù),無限小數(shù)不一定都是循環(huán)小數(shù)。例如,圓周率π也是無限小數(shù)。
9.循環(huán)小數(shù):小數(shù)部分一個數(shù)字或幾個數(shù)字依次不斷地重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:0.333……,1.2470470470……都是循環(huán)小數(shù)。
10.純循環(huán)小數(shù):循環(huán)節(jié)從十分位就開始的循環(huán)小數(shù),叫做純循環(huán)小數(shù)。
11.混循環(huán)小數(shù):與純循環(huán)小數(shù)有唯一的區(qū)別,不是從十分位開始循環(huán)的循環(huán)小數(shù),叫混循環(huán)小數(shù)。
12.無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。
二、分?jǐn)?shù)
表示把 “單位1”平均分成若干份,取其中的一份或幾份的數(shù),叫做分?jǐn)?shù)。
小升初數(shù)學(xué)必考知識點11
和差問題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者和-小數(shù)=大數(shù))
差倍問題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或小數(shù)+差=大數(shù))
植樹問題
1非封閉線路上的植樹問題主要可分為以下三種情形:
、湃绻诜欠忾]線路的兩端都要植樹,那么:
株數(shù)=段數(shù)+1=全長÷株距-1
全長=株距×(株數(shù)-1)
株距=全長÷(株數(shù)-1)
、迫绻诜欠忾]線路的一端要植樹,另一端不要植樹,那么:
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
、侨绻诜欠忾]線路的`兩端都不要植樹,那么:
株數(shù)=段數(shù)-1=全長÷株距-1
全長=株距×(株數(shù)+1)
株距=全長÷(株數(shù)+1)
2封閉線路上的植樹問題的數(shù)量關(guān)系如下
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
【小升初數(shù)學(xué)必考知識點】相關(guān)文章:
關(guān)于小升初數(shù)學(xué)必考知識點大全01-29
小升初科學(xué)必考知識點,小升初科學(xué)08-31
長沙小升初數(shù)學(xué)數(shù)的整除必考知識點匯總09-09
小升初語文必考知識點梳理02-13
小升初人教版語文必考知識點06-07
小升初必考的綜合知識06-26