高中數(shù)學試卷答題技巧
數(shù)學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現(xiàn)實世界的任何問題,所有的數(shù)學對象本質上都是人為定義的。以下是小編整理的高中數(shù)學試卷答題技巧,僅供參考,大家一起來看看吧。
一、“構造法+函數(shù)法”的結合
而且本題還可以從另一個思路進行解答,就是運用復數(shù)模的概念,將相聯(lián)系的數(shù)據(jù)和看成一個模函數(shù),仍然可以得到所求的結果。
二、轉換法
這種方法是體現(xiàn)學生的想象力及創(chuàng)新能力的方法,也是數(shù)學解題技巧中最富有挑戰(zhàn)性的方法,能將復雜的題型輔以轉換的功能,成為簡單的、易被理解的題型。比如,一個正方體平面為ABCB和A1B1C1D1,在正方體的棱長D1C1和C1B1分別設置兩點E和F為中點,AC與BD相交于P點,A1C1于EF相交于Q點,求證:(1)點D、B、F、B在同一平面上;(2)如果線段A1C通過平面DBFE,交點到R點,那么P、R、Q三點共線?
解題(1):由題可知:線段EF是△D1B1C1的中位線,所以,EF與B1D1平行,在正方體AC1中,線段B1D1與BD平行,相應得出:線段EF與線段BD相平行,由此得出線段EF和BD在一個平面,所以可以求得點D、B、F、E在同一個平面。
解題(2):假設平面A1ACC1為x,平面BDEF為y,由于Q點在平面AC,所以Q點也屬于平面x,為x和y的交點,同屬兩個平面的點。同理可得,點P也屬x、y的公共點,而R點是平面A1C與平面y的交點,所以,可以得到P、Q、R三點共線。
三、反證法
任何事物的結果有時順著程序去思考,往往不得要領,倘若從結果向事物開始的方向或用假設的反方向去推理,反倒會“一片洞天”。數(shù)學解題技巧也是如此。首先,假設命題結論相反的.答案,順理演繹地解答,得出假設的矛盾結果,從另一側面論證了正確答案。例如,蘇教版教材必修1《函數(shù)》章節(jié),已知函數(shù)f(x)是一項正負無限大范圍內的增函數(shù),a、b都為實數(shù),求證:(1)假設:(a+b)≥0,則函數(shù)式表示為:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求證(1)問中逆命題是否正確。
解題分析:(1)因為(a+b)≥0,移項后,可得:a≥-b,由于函數(shù)為單調遞增函數(shù),則:f(a)≥f(-b),又(a+b)≥0,移項后,可得:b≥-a,f(b)≥f(-a);兩個方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此證明完畢。
解題(2)分析思路就是由(1)中得出的結論f(a)+f(b)≥f(-a)+f(-b),反證得出(a+b)≥0是否成立。于是,我們先假設(a+b)<0成立,那么,移項后,分別出現(xiàn)兩個不等式函數(shù),即:f(a)f(b)
四、逐項消除法(也可稱:歸納法)
這種方法就是將數(shù)列前項與后項進行規(guī)律查找,逐項消除或歸納合并的方法去求得答案。在蘇教版必修5《數(shù)列》章節(jié)中,有一道習題為:求:1/2+2/3!+3/4!+4/5!+5/6!+…+(n-1)/n!的和;
解題分析:這道習題就是按照一定的規(guī)律進行遞增的集合,那么,就可以運用求和的公式,轉化為:Sn=1/1-1/2+1/2+1/3+…+1/(n-2)!-1/(n-1)!+1/(n-1)!-1/n=1-(1/n)的形式進行解答,使解題的速度效率提高。
數(shù)學解題方法多種多樣,熟練掌握解題技巧不但可以發(fā)掘出學生的創(chuàng)新思維,而且可以通過發(fā)散性思維激發(fā)起學生的學習興趣,將數(shù)學成為萬變的花筒,神奇又有趣,更好地培養(yǎng)高中生善于思考,細心觀察,不斷總結的良好習慣。既鍛煉了高中生的邏輯思維能力,又練就了他們多角度、多層次地分析問題、解決問題的能力。
【高中數(shù)學試卷答題技巧】相關文章:
高考數(shù)學試卷答題順序08-14
高中趣味語文冷門知識及答題技巧09-23
高中語文試題答題技巧及策略10-07
大題答題技巧09-14
政治簡答題答題技巧11-20
政治簡答題的答題技巧11-19
CPA《審計》簡答題答題技巧10-05
高考技巧答題規(guī)律08-22
高考數(shù)學答題技巧08-23
高考語文答題技巧08-23