因式分解的方法數(shù)學知識點歸納
知識要點:因式分解沒有普遍適用的方法,初中數(shù)學教材中主要介紹了提公因式法、公式法。
因式分解的方法
注意三原則
1.分解要徹底(是否有公因式,是否可用公式)
2.最后結果只有小括號
3.最后結果中多項式首項系數(shù)為正(例如:-3x^2+x=x(-3x+1))
4.最后結果每一項都為最簡因式
歸納方法:
1.提公因式法。
2.公式法。
3.分組分解法。
4.湊數(shù)法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.組合分解法。
6.十字相乘法。
7.雙十字相乘法。
8.配方法。
9.拆項補項法。
10.換元法。
11.長除法。
12.求根法。
13.圖象法。
14.主元法。
15.待定系數(shù)法。
16.特殊值法。
17.因式定理法。
基本方法 各項都含有的公共的因式叫做這個多項式各項的公因式,公因式可以是單項式,也可以是多項式。
如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提取公因式
具體方法:當各項系數(shù)都是整數(shù)時,公因式的系數(shù)應取各項系數(shù)的最大公約數(shù)字母取各項的相同的字母,而且各字母的指數(shù)取次數(shù)最低的。當各項的系數(shù)有分數(shù)時,公因式系數(shù)為各分數(shù)的最大公約數(shù)。如果多項式的第一項是負的,一般要提出“-”號,使括號內的第一項的系數(shù)成為正數(shù)。提出“-”號時,多項式的各項都要變號。
口訣:找準公因式,一次要提盡全家都搬走,留1把家守提負要變號,變形看奇偶。
例如:-am+bm+cm=-(a-b-c)m
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把2a+1/2變成2(a+1/4)不叫提公因式
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式: (a+b)(a-b)=a^2-b^2,反過來為a^2-b^2=(a+b)(a-b)
完全平方公式:(a+b)^2=a^2+2ab+b^2,反過來為a^2+2ab+b^2=(a+b)^2
(a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍。
兩根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
例如:a^2+4ab+4b^2 =(a+2b)^2。
1.分解因式技巧掌握:
①分解因式是多項式的恒等變形,要求等式左邊必須是多項式
②分解因式的結果必須是以乘積的形式表示
、勖總因式必須是整式,且每個因式的次數(shù)都必須低于原來多項式的次數(shù)
、芊纸庖蚴奖仨毞纸獾矫總多項式因式都不能再分解為止。
注:分解因式前先要找到公因式,在確定公因式前,應從系數(shù)和因式兩個方面考慮。
2.提公因式法基本步驟:
(1)找出公因式
(2)提公因式并確定另一個因式:
、俚谝徊秸夜蚴娇砂凑沾_定公因式的方法先確定系數(shù)再確定字母
、诘诙教峁蚴讲⒋_定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式
③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。
知識要領總結:在競賽上,有拆項和添減項法,分組分解法和十字相乘法,待定系數(shù)法,雙十字相乘法,對稱多項式,輪換對稱多項式法,余式定理法,求根公式法,換元法,長除法,短除法,除法等。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的.坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
②不準丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【因式分解的方法數(shù)學知識點歸納】相關文章:
因式分解數(shù)學知識點歸納07-28
因式分解初二數(shù)學知識點歸納08-09
因式分解初一數(shù)學知識點歸納07-30
初中數(shù)學配方法的知識點歸納10-27
數(shù)學因式分解的方法05-06
數(shù)學因式分解知識點07-28
因式分解的數(shù)學方法05-10
歸納政治的知識點的方法09-09
因式分解的數(shù)學知識點07-28