考研數(shù)學(xué)中線性代數(shù)計(jì)算方法
考研數(shù)學(xué)中線性代數(shù)部分的分?jǐn)?shù)占了整體的百分之二十二,是整個(gè)考研數(shù)學(xué)不可缺少的部分,其章節(jié)內(nèi)容與高等數(shù)學(xué)和概率統(tǒng)計(jì)沒有太多聯(lián)系,其知識(shí)點(diǎn)具有細(xì)致性和整體性,前后章節(jié)聯(lián)系比較密切。
線性代數(shù)中的矩陣部分是整個(gè)線代非常重要的部分,也是要求我們同學(xué)要掌握透徹的一個(gè)部分,而其中關(guān)于方陣冪的問題是跨考教育老師上課時(shí)所重點(diǎn)強(qiáng)調(diào)的,方陣冪的計(jì)算是要求我們要掌握的。在授課過程中,每位教授這門課的老師都會(huì)跟同學(xué)們來總結(jié)有關(guān)方陣冪的計(jì)算,也都分了情況給大家展示了其各種類型的計(jì)算方法。
首先對(duì)于矩陣行或者列均成比例的矩陣,這種類型的矩陣可以寫成一列乘以一行的形式,列是矩陣各列的最簡(jiǎn)公約數(shù),行也是此矩陣各行的最簡(jiǎn)公約數(shù)。其n次冪的求法,我們也總結(jié)過,也給大家推到過。
其次是特殊的上(下)三角n次冪的運(yùn)算問題,我們也總結(jié)了,把其分解成單位矩陣和特殊上(下)三角來處理的,并且運(yùn)用了二項(xiàng)式展開的知識(shí)。
然后就是利用相似對(duì)角化的知識(shí)來求n次冪的運(yùn)算問題,像剛剛過去的201X年考研中數(shù)一、數(shù)二、數(shù)三都出現(xiàn)了一道關(guān)于冪運(yùn)算的題,要我們求矩陣A的`99次冪等于多少。這種題目主要是先求出矩陣的特征值再求出其對(duì)應(yīng)的特征向量,利用相似對(duì)角化來求這一題。當(dāng)然這種題目要求我們同學(xué)一定要仔細(xì),不要出現(xiàn)計(jì)算上到錯(cuò)誤。
最后還有關(guān)于帶有兩個(gè)零的拉普拉斯問題,這種分塊矩陣,有時(shí)也會(huì)有相關(guān)題目出現(xiàn)。
方陣冪的計(jì)算問題希望同學(xué)們?cè)诮酉聛淼膶W(xué)習(xí)過程中認(rèn)真對(duì)待,對(duì)于這種類型的題目要融會(huì)貫通,不同類型的冪的計(jì)算問題對(duì)應(yīng)于相應(yīng)的方法來解決。
整個(gè)考研數(shù)學(xué)中線性代數(shù)部分算是相對(duì)較簡(jiǎn)單的一個(gè)科目,因此,對(duì)于線性代數(shù)這一部分的希望同學(xué)們盡量不要失分。
【考研數(shù)學(xué)中線性代數(shù)計(jì)算方法】相關(guān)文章:
考研數(shù)學(xué)線性代數(shù)行列式的計(jì)算方法01-26
考研數(shù)學(xué)線性代數(shù)是怎么考察的11-07
考研數(shù)學(xué)線性代數(shù)的重要考點(diǎn)11-14
考研數(shù)學(xué)線性代數(shù)的復(fù)習(xí)要點(diǎn)11-25
考研數(shù)學(xué)線性代數(shù)的考點(diǎn)預(yù)測(cè)11-24
考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)的重點(diǎn)12-05