數(shù)論問題的奧數(shù)練習(xí)題:整數(shù)拆分的綜合訓(xùn)練
把70表示成11個不同的自然數(shù)之和,同時要求含有質(zhì)數(shù)的個數(shù)最多。
分析:先考慮把70表示成11個不同的`自然數(shù)之和。因1+2+3+……+11=66,現(xiàn)在要將4分配到適當(dāng)?shù)募訑?shù)上,使其和等于70,又要使這11個加數(shù)互不相等。先將4分別加在后四個加數(shù)上,得到四種分拆方法:
70=1+2+3+4+5+6+7+8+9+10+15
=1+2+3+4+5+6+7+8+9+14+11
=1+2+3+4+5+6+7+8+13+10+11
=1+2+3+4+5+6+7+12+9+10+11
再將4拆成1+3,把1和3放在適當(dāng)?shù)奈恢蒙,僅有一種新方法:
70==1+2+3+4+5+6+7+8+9+13+12
再將4拆成1+1+2或1+1+1+1或2+2,分別加在不同的位置上,都得不出新的分拆方法,故這樣的分拆方法一共有五種。
顯然,這五種分拆方法中含有質(zhì)數(shù)的個數(shù)最多的是:
1+2+3+4+5+6+7+8+13+10+11
點(diǎn)金術(shù):巧用舉例和篩選法得出結(jié)論。
【數(shù)論問題的奧數(shù)練習(xí)題:整數(shù)拆分的綜合訓(xùn)練】相關(guān)文章:
整數(shù)拆分小學(xué)奧數(shù)整數(shù)數(shù)論練習(xí)題07-21
奧數(shù)數(shù)論的整數(shù)拆分問題習(xí)題07-23
小學(xué)奧數(shù)數(shù)論練習(xí)題整數(shù)拆分問題07-31
關(guān)于數(shù)論奧數(shù)練習(xí):整數(shù)拆分例題07-29
整數(shù)拆分奧數(shù)綜合解析07-25
奧數(shù)數(shù)論解析整數(shù)拆分練習(xí)07-23
整數(shù)拆分的奧數(shù)題07-23