數(shù)學乘法分配律教學反思(通用5篇)
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。以下是小編為大家?guī)淼臄?shù)學乘法分配律教學反思,歡迎大家參考。
數(shù)學乘法分配律教學反思 篇1
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。我根據(jù)教學內容的特點,為學生提供多種探究方法,激發(fā)學生的自主意識。
具體設計:先創(chuàng)設兔子吃蘿卜的情景,調動學生的學習積極性。
通過買“老伯伯養(yǎng)了10只猴子,每只兔子早上吃4個蘿卜,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,讓學生通過觀察兩種不同的計算方法也得到了相同的結果,這兩個算式也可用“=”連接。
然后讓學生觀察這兩個等式的特點,仿造上面的等式填空。
。4+5)×25=(14+25)×5=(37+125)×8=。
再讓學生觀察這幾組算式,等號左邊的算式有什么相同點?等號右邊的算式有什么相同點?等號左邊算式中的兩個加數(shù)與右邊算式中的什么數(shù)有關系?左邊算式中的一個因數(shù)與右邊算式中的哪個數(shù)有關系?使之讓學生從中感受了乘法分配律的模型。
從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變!庇米帜感问奖硎荆海╝+b)×c=a×c+b×c,他們確實能夠體會到兩個不同的算式具有相等的關系。
第一步:通過資料獲取繼續(xù)研究的信息。
雖然所得的信息很簡單,只是幾組具有相等關系的算式,但這是學生通過活動自己獲取的,學生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調動學生的參與意識。
第二步:觀察算式,尋找規(guī)律。讓學生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不急于告訴學生答案,而是讓學生自己通過舉例加以驗證。這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
第三步:應用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學生鞏固和擴大知識,又是吸收內化知識的階段,同時還是開發(fā)學生創(chuàng)新思維的重要階段。
本節(jié)課的可取之處:
1、為學生提供了充分的數(shù)學活動機會,把學生的活動定位在感悟和體驗上,引導學生用數(shù)學思維方式去發(fā)現(xiàn)、去探索。
2、使學生在辨析與爭論中,自然而然地完成猜測與驗證,形成清晰的認識,在學生舉例中使學生感到乘法分配律的一個重要因素,最后由特殊到一般總結字母公式。
3、將模仿式的學習變?yōu)樘骄渴降膶W習。
4、在本課的練習設計上,能力求有針對性,有坡度,同時也注意知識的延伸。
本節(jié)課的不足之處:
1、習題在安排上在充分理解《乘法分配律》的基礎上,可以再安排一些具有思考性的題目,如78×99+78=78×(99+1),為后面的簡便運算作伏筆,這樣教學效果會更好。
2、在數(shù)學術語上還得反復推敲,以達到準確無誤。
3、本堂課中新的教學理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學生的積極性沒有充分調動起來。
我會堅持不斷學習理論知識,多聽課多向前輩們請教,切實提高業(yè)務能力。
數(shù)學乘法分配律教學反思 篇2
乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。
從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學目標定位準確,沒有把目標定位局限于探索理解乘法分配律,而是又引導學生應用乘法分配律進行了簡便計算,通過學生與學生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構。整節(jié)課的學習氛圍輕松愉悅、學生思維活躍、教學效果非常好;就瓿山虒W任務。
劉老師對本課的教學設計很科學,思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學生經歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學生一種數(shù)學思想和數(shù)學方法,這也正是新課標強調的對學生其中兩基培養(yǎng)的體現(xiàn)。
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會。
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
建議:在教學中不僅要注意乘法分配律的外形結構,更要注重其內涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關鍵詞“分別”加以分析,以此深化對數(shù)學模型的理解。否則,象38×99+38這樣的形式,就會成為學生練習中的攔路虎。
數(shù)學乘法分配律教學反思 篇3
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的'解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點
數(shù)學乘法分配律教學反思 篇4
①1355+5587=55(13+87)=5513+5587
、8(125+9)=8125+9
③(100-7)25=10025+725
、9947=(100-1)47=10047-1
⑤35201=35(201-1)
、79125=125(80-1)=12580+1251
、79125=125(80-1)=12580-1
⑧1252532=1258+425
、88125=808125
⑩24335=(245)33=10033
學生對于乘法分配律和結合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學時我們往往注重等式兩邊的外形特點,即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數(shù)連乘,而乘法分配律的特征是兩個數(shù)的和乘一個數(shù)或兩個積的和。在練習題中(40+4)25與(404)25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結合律和乘法分配律的理解
如:12588;10189你能有幾種方法?12588①豎式計算②125811③125(80+8)④(100+25)88等等。10189①豎式計算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.對于不同解法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?力爭達到用簡便計算法進行計算成為學生一種自主行為,并能根據(jù)題目的特色靈活選擇適當?shù)乃惴ǖ哪康?
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
對于比較特殊的題目可以間斷性練習,對優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基礎上反復練習,才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實可行的計劃,盡快使孩子消化吸收。
數(shù)學乘法分配律教學反思 篇5
乘法分配律是教學的難點也是重點。這節(jié)課采用從生活中的問題入手,利用學生感興趣的具體情境展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識,將重視結論的記憶變?yōu)橹匾晫W生獲取結論的體驗和感悟,將模仿式的學習變?yōu)樘骄渴降膶W習。學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且更能培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力;仡櫿麄教學過程,這節(jié)課的亮點體現(xiàn)在以下幾個方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學中要為學生創(chuàng)設大量生動、具體、鮮活的生活情境,讓學生感到數(shù)學就是從身邊的生活中來的,激發(fā)學生學習的熱情。在教學時,我先創(chuàng)設情景,提出問題:“一共有多少名學生參加這次植樹活動?”。讓學生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學生提供了自己獨立探究的機會
數(shù)學教學應該是數(shù)學教學的活動。傳統(tǒng)的教學活動往往只重視結論的記憶,而這節(jié)課我把學生的活動定位在感悟和體驗上,引導學生用數(shù)學思維方式去發(fā)現(xiàn),去探索。尤其是在學生初步感悟到兩種算法相等關系的基礎上,繼續(xù)為學生創(chuàng)造一個思考的情景。我要求學生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學生對“乘法分配律”已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。
三、為學生的學習方式的轉變創(chuàng)設了條件
模仿學習,學生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應用。改變學生的學習方式,讓學生進行探索性的學習,不能是一句空話。在這節(jié)課上,我抓住學生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
【數(shù)學乘法分配律教學反思(通用5篇)】相關文章:
《乘法分配律》數(shù)學教案10-29
數(shù)學教學反思07-25
數(shù)學乘法整理與復習05-13
人教版《筆算乘法》教學設計(通用5篇)10-04
數(shù)學復習課教學反思03-09
數(shù)學總復習教學反思09-04
認識乘法教學設計11-17
數(shù)學小數(shù)乘法知識點02-08
分數(shù)乘法數(shù)學復習方案05-12