高二數(shù)學(xué)排列組合公式知識(shí)點(diǎn)匯總
在日復(fù)一日的學(xué)習(xí)中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?以下是小編幫大家整理的高二數(shù)學(xué)排列組合公式知識(shí)點(diǎn),僅供參考,大家一起來看看吧。
高二數(shù)學(xué)排列組合公式知識(shí)點(diǎn)1
1.計(jì)數(shù)原理知識(shí)點(diǎn)
①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分類)
2. 排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!
Cnm = n!/(n-m)!m!
Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選后排,先分再排
排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素。 以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置。
捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應(yīng)用問題時(shí),應(yīng)注意:
(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
。2)通過分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;
。3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;
。4)列出式子計(jì)算和作答。
經(jīng)常運(yùn)用的數(shù)學(xué)思想是:
、俜诸愑懻撍枷;
、谵D(zhuǎn)化思想;
、蹖(duì)稱思想。
4.二項(xiàng)式定理知識(shí)點(diǎn):
、伲╝+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
、谥饕再|(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m
最大二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))
所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和
Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1
、弁(xiàng)為第r+1項(xiàng): Tr+1= Cnran-rbr 作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問題。
5.二項(xiàng)式定理的.應(yīng)用:解決有關(guān)近似計(jì)算、整除問題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。
6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。
高二數(shù)學(xué)排列組合公式知識(shí)點(diǎn)2
一、排列
1 定義
(1)從n個(gè)不同元素中取出m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一排列。
(2)從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),記為 Amn.
2 排列數(shù)的公式與性質(zhì)
。1)排列數(shù)的公式: Amn=n(n-1)(n-2)……(n-m+1)
特例:當(dāng)m=n時(shí), Amn=n!=n(n-1)(n-2)……321
規(guī)定:0!=1
二、組合
1 定義
。1)從n個(gè)不同元素中取出 m個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合
。2)從n個(gè)不同元素中取出m個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào) Cmn表示。
2 比較與鑒別
由排列與組合的定義知,獲得一個(gè)排列需要“取出元素”和“對(duì)取出元素按一定順序排成一列”兩個(gè)過程,而獲得一個(gè)組合只需要“取出元素”,不管怎樣的順序并成一組這一個(gè)步驟。
排列與組合的區(qū)別在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的順序有關(guān)。因此,所給問題是否與取出元素的順序有關(guān),是判斷這一問題是排列問題還是組合問題的理論依據(jù)。
【高二數(shù)學(xué)排列組合公式知識(shí)點(diǎn)匯總】相關(guān)文章:
高考數(shù)學(xué)復(fù)習(xí)線性公式知識(shí)點(diǎn)09-27
必修四數(shù)學(xué)公式知識(shí)點(diǎn)08-17
高一數(shù)學(xué)公式知識(shí)點(diǎn)歸納12-07
高二數(shù)學(xué)必考知識(shí)點(diǎn)10-26
高二數(shù)學(xué)知識(shí)點(diǎn)12-14
高二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)08-05
關(guān)于總復(fù)習(xí)數(shù)學(xué)公式匯總06-17
GMAT數(shù)學(xué)解題策略:排列組合10-15