亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高一數(shù)學(xué)知識(shí)點(diǎn)歸納

時(shí)間:2022-02-18 16:29:53 數(shù)學(xué) 我要投稿

高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納

  在我們平凡的學(xué)生生涯里,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。掌握知識(shí)點(diǎn)是我們提高成績的關(guān)鍵!以下是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)歸納,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納

  一.知識(shí)歸納:

  1.集合的有關(guān)概念。

  1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

  注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

  ②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數(shù)集:n,z,q,r,n*

  2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

  1)子集:若對(duì)x∈a都有x∈b,則a b(或a b);

  2)真子集:a b且存在x0∈b但x0 a;記為a b(或 ,且 )

  3)交集:a∩b={x| x∈a且x∈b}

  4)并集:a∪b={x| x∈a或x∈b}

  5)補(bǔ)集:cua={x| x a但x∈u}

  注意:①? a,若a≠?,則? a ;

 、谌 , ,則 ;

 、廴 且 ,則a=b(等集)

  3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號(hào),特別要注意以下的符號(hào):(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

  4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

  ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

 、躠∩cub = 空集 cua b;⑤cua∪b=i a b。

  5.交、并集運(yùn)算的性質(zhì)

 、賏∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

 、踓u (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

  6.有限子集的個(gè)數(shù):設(shè)集合a的元素個(gè)數(shù)是n,則a有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

  二.例題講解:

  【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},則m,n,p滿足關(guān)系

  a) m=n p b) m n=p c) m n p d) n p m

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對(duì)于集合m:{x|x= ,m∈z};對(duì)于集合n:{x|x= ,n∈z}

  對(duì)于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以m n=p,故選b。

  分析二:簡單列舉集合中的元素。

  解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。

  = ∈n, ∈n,∴m n,又 = m,∴m n,

  = p,∴n p 又 ∈n,∴p n,故p=n,所以選b。

  點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

  變式:設(shè)集合 , ,則( b )

  a.m=n b.m n c.n m d.

  解:

  當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選b

  【例2】定義集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},則a*b的子集個(gè)數(shù)為

  a)1 b)2 c)3 d)4

  分析:確定集合a*b子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個(gè)來求解。

  解答:∵a*b={x|x∈a且x b}, ∴a*b={1,7},有兩個(gè)元素,故a*b的子集共有22個(gè)。選d。

  變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個(gè)數(shù)為

  a)5個(gè) b)6個(gè) c)7個(gè) d)8個(gè)

  變式2:已知{a,b} a {a,b,c,d,e},求集合a.

  解:由已知,集合中必須含有元素a,b.

  集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  評(píng)析 本題集合a的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有 個(gè) .

  【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求實(shí)數(shù)p,q,r的值。

  解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

  ∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a

  ∵a∩b={1} ∴1∈a ∴方程x2+px+q=0的兩根為-2和1,

  ∴ ∴

  變式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求實(shí)數(shù)b,c,m的值.

  解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

  ∴b={x|x2-5x+6=0}={2,3} ∵a∪b=b ∴

  又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b滿足:a∪b={x|x>-2},且a∩b={x|1

  分析:先化簡集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。

  解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

  綜合以上各式有b={x|-1≤x≤5}

  變式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

  點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。

  變式2:設(shè)m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有滿足條件的a的集合。

  解答:m={-1,3} , ∵m∩n=n, ∴n m

 、佼(dāng) 時(shí),ax-1=0無解,∴a=0 ②

  綜①②得:所求集合為{-1,0, }

  【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)閝,若p∩q≠φ,求實(shí)數(shù)a的取值范圍。

  分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。

  解答:(1)若 , 在 內(nèi)有有解

  令 當(dāng) 時(shí),

  所以a>-4,所以a的取值范圍是

  變式:若關(guān)于x的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。

  解答:

  三、冪函數(shù)的性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的.定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

  在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

  在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(1,1)這點(diǎn)。

 。2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

 。4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

  (6)顯然冪函數(shù)無界。

  解題方法:換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟?fù)雜的計(jì)算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

【高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納】相關(guān)文章:

高一數(shù)學(xué)知識(shí)點(diǎn)整理歸納02-16

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納01-09

高一數(shù)學(xué)公式知識(shí)點(diǎn)歸納12-07

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納10-08

高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納08-13

高一數(shù)學(xué)必修二知識(shí)點(diǎn)歸納08-05

高一數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)歸納12-18

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納10-09

數(shù)學(xué)重要知識(shí)點(diǎn)歸納02-14

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納9篇01-10