高二數(shù)學(xué)2-3知識(shí)點(diǎn)總結(jié)
總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,快快來寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編幫大家整理的高二數(shù)學(xué)2-3知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
一、不等式的性質(zhì)
1.兩個(gè)實(shí)數(shù)a與b之間的大小關(guān)系
2.不等式的`性質(zhì)
(4) (乘法單調(diào)性)
3.絕對(duì)值不等式的性質(zhì)
(2)如果a>0,那么
(3)|ab|=|a||b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))
2.不等式的證明方法
(1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
三、解不等式
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
、俳庖辉叽尾坏仁;
、诮夥质讲坏仁;
、劢鉄o理不等式;
、芙庵笖(shù)不等式;
、萁鈱(duì)數(shù)不等式;
、藿鈳Ы^對(duì)值的不等式;
⑦解不等式組.
2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):
(1)正確應(yīng)用不等式的基本性質(zhì).
(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性.
(3)注意代數(shù)式中未知數(shù)的取值范圍.
3.不等式的同解性
(5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.
(9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0<a<1時(shí),af(x)>ag(x)與f(x)<g(x)同
【高二數(shù)學(xué)2-3知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-08
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)10-16
高二數(shù)學(xué)知識(shí)點(diǎn)12-14
高二數(shù)學(xué)必考知識(shí)點(diǎn)10-26
高二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)08-05
高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)01-11
高二數(shù)學(xué)知識(shí)點(diǎn)梳理01-08