數學高二水平考知識點9篇
在平凡的學習生活中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。還在苦惱沒有知識點總結嗎?以下是小編為大家收集的數學高二水平考知識點,歡迎閱讀與收藏。
數學高二水平考知識點1
集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當于集合的名字,沒有任何實際的意義。
將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內部是具有某種共同性質的數學元素。
常用的有列舉法和描述法。
1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數組成的集合表示為:{x|0
3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。集合
自然語言常用數集的符號:
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N_
(2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z-
(3)全體整數的集合通常稱作整數集,記作Z
(4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-)
(5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-)
(6)復數集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。
集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設A為集合,把A的全部子集構成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復數集C實數集R正實數集R+負實數集R-整數集Z正整數集Z+負整數集Z-有理數集Q正有理數集Q+負有理數集Q-不含0的有理數集Q_
數學高二水平考知識點2
(1)順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。
順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所
指定的操作。
(2)條件結構:條件結構是指在算法中通過對條件的判斷根據條件是否成立而選擇不同流向的
算法結構。
條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行
A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。
(3)循環(huán)結構:在一些算法中,經常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:
�、僖活愂钱斝脱h(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
�、诹硪活愂侵钡叫脱h(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
注意:
1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。
2在循環(huán)結構中都有一個計數變量和累
加變量。計數變量用于記錄循環(huán)次數,累加變量用于輸出結果。計數變量和累加變量一般是同步執(zhí)行的,累加一次,計數一次
數學高二水平考知識點3
考點一:求導公式。
例1.f(x)是f(x)13x2x1的導函數,則f(1)的值是3
考點二:導數的幾何意義。
例2.已知函數yf(x)的圖象在點M(1,f(1))處的切線方程是y
1x2,則f(1)f(1)2
,3)處的切線方程是例3.曲線yx32x24x2在點(1
點評:以上兩小題均是對導數的幾何意義的考查。
考點三:導數的幾何意義的應用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標。
點評:本小題考查導數幾何意義的應用。解決此類問題時應注意“切點既在曲線上又在切線上”這個條件的應用。函數在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。
考點四:函數的單調性。
例5.已知fxax3_1在R上是減函數,求a的取值范圍。32
點評:本題考查導數在函數單調性中的應用。對于高次函數單調性問題,要有求導意識。
考點五:函數的極值。
例6.設函數f(x)2x33ax23bx8c在x1及x2時取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點評:本題考查利用導數求函數的極值。求可導函數fx的極值步驟:
�、偾髮礷'x;
②求f'x0的根;③將f'x0的根在數軸上標出,得出單調區(qū)間,由f'x在各區(qū)間上取值的正負可確定并求出函數fx的極值。
數學高二水平考知識點4
如果直線a與平面α平行,那么直線a與平面α內的直線有哪些位置關系?
平行或異面。
若直線a與平面α平行,那么在平面α內與直線a平行的直線有多少條?這些直線的位置關系如何?
無數條;平行。
如果直線a與平面α平行,經過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關系如何?為什么?
平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內,所以a與b平行。
綜上分析,在直線a與平面α平行的條件下我們可以得到什么結論?
如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
數學高二水平考知識點5
(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數函數的值域為大于0的實數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向于X軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數無界。
奇偶性
定義
一般地,對于函數f(x)
(1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。
(2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。
(3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。
數學高二水平考知識點6
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
�、僦本€的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
�、谠谄矫嬷苯亲鴺讼抵校恳粭l直線都有一個確定的傾斜角;
�、蹆A斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k<0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當a≠0時,
傾斜角為90度,即與X軸垂直
數學高二水平考知識點7
(1)總體和樣本
�、僭诮y(tǒng)計學中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
�、郯芽傮w中個體的總數叫做總體容量.
④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,研究,我們稱它為樣本.其中個體的個數稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的.方法:
①抽簽法
�、陔S機數表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設計中,主要考慮:
�、倏傮w變異情況;
②允許誤差范圍;
�、鄹怕时WC程度。
(4)抽簽法:
�、俳o調查對象群體中的每一個對象編號;
�、跍蕚涑楹灥墓ぞ�,實施抽簽;
�、蹖颖局械拿恳粋€個體進行測量或調查
數學高二水平考知識點8
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數列�?荚嚤乜�。等差等比數列的通項公式、前n項和及一些性質。這一章屬于學起來很容易,但做題卻不會做的類型�?荚囶}中,一般都是要求通項公式、前n項和,所以拿到題目之后要帶有目的的去推導。
第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據實際問題的限制要求求最值。
選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達式難度就不大。后面兩到三問難打一般會很大,而且較費時間。所以不建議做。
這一章屬于學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。一般會考察用導數求最值,會用導數公式就難度不大。
數學高二水平考知識點9
一、直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,
�、菩苯厥�:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關系:
(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標準方程:.⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長
【數學高二水平考知識點9篇】相關文章:
數學高二水平考知識點01-14
數學高二水平考知識點精選12-07
高中物理水平考知識點08-08
物理高中水平考精選知識點匯總12-07
高中物理水平考知識點匯總08-04
高二數學知識點12-14
高二數學必考知識點10-26
高二數學復習知識點08-05
中考數學易考知識點匯總10-31