亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)

時(shí)間:2023-02-06 16:39:07 數(shù)學(xué) 我要投稿

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)

  在我們平凡無奇的學(xué)生時(shí)代,大家都背過各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編收集整理的初二數(shù)學(xué)勾股定理知識(shí)點(diǎn),希望能夠幫助到大家。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)1

  勾股定理應(yīng)用舉例:

  1、已知直角三角形的任意兩邊求第三邊。

  2、已知直角三角形的任意一邊確定另兩邊的關(guān)系。

  3、證明包含平方(算術(shù)平方根)關(guān)系的幾何問題。

  4、構(gòu)造方程(或方程組)計(jì)算有關(guān)線段的長度,解決生產(chǎn)、生活中的實(shí)際問題。

  平面展開——最短路徑問題求解方法:

  解決此類問題時(shí),要先確定好該路徑的起點(diǎn)終點(diǎn),以及立方體的平面展開圖,借助勾股定理來求得路徑的長度。由于展開的方法可以多種,因此對(duì)于路徑的'求解也是有多種方法,在這里必定有一個(gè)最小值,此值為最短路徑。

  1、勾股數(shù)的定義:能夠成為直角三角形三條邊長的三個(gè)正整數(shù),成為勾股數(shù)。

  2、常見的勾股數(shù)有哪些:

  (1)3,4,5

 。2)6,8,10

 。3)8,15,17

 。4)7,24,25

 。5)5,12,13

 。6)9,12,15。

  3、勾股數(shù)組的規(guī)律:

 。1)如果a為一個(gè)大于1的奇數(shù),b、c是兩個(gè)連續(xù)自然數(shù),且,則a,b,c為一組勾股數(shù);

 。2)如果a,b,c為一組勾股數(shù),那么na,nb,nc也是一組勾股數(shù),其中n(n≥1)為自然數(shù);

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)2

  逆定理的內(nèi)容:

  如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。

  說明:

  (1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的.,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.

  2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:

  (1)確定最大邊;

  (2)算出最大邊的平方與另兩邊的平方和;

  (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)3

  勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,即如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2(勾股定理公式)

  直角三角形性質(zhì)定理:

  1.直角三角形兩直角邊a,b的平方和等于斜邊c的平方。即a2+b2=c2。

  2.在直角三角形中,兩個(gè)銳角互余。

  3.在直角三角形中,斜邊上的中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點(diǎn),外接圓半徑R=C/2)。

  4.直角三角形的兩直角邊的'乘積等于斜邊與斜邊上高的乘積。

  5.在直角三角形中,如果有一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。其逆定理也成立,即在直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30°。

  7.直角三角形直角上的角平分線與斜邊的交點(diǎn)D 則BD:DC=AB:AC

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)4

  1.逆定理的內(nèi)容:

  如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。

  說明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的'平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.

  2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:

  (1)確定最大邊;

  (2)算出最大邊的平方與另兩邊的平方和;

  (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)5

  一、逆定理的內(nèi)容:

  如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。

  說明:

 。1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的.平方和與較長邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;

 。2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b。

  二、利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:

 。1)確定最大邊;

 。2)算出最大邊的平方與另兩邊的平方和;

 。3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

  三、勾股數(shù)

  能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù)。

  四、一個(gè)重要結(jié)論:

  由直角三角形三邊為邊長所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。

  五、勾股定理及其逆定理的應(yīng)用

  解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。

  有了上文梳理的勾股定理的逆定理知識(shí)點(diǎn)整理,相信大家對(duì)考試充滿了信心,同時(shí)預(yù)祝大家考試取得好成績。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)6

  初二數(shù)學(xué)勾股定理的由來

  勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方。

  勾股定理的逆定理

  如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊.

 、俟垂啥ɡ淼哪娑ɡ硎桥卸ㄒ粋(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和a2+b2與較長邊的平方c2作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;若a2+b22時(shí),以a,b,c為三邊的`三角形是鈍角三角形;若a2+b2>c2時(shí),以a,b,c為三邊的三角形是銳角三角形;

  ②定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c2,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.

 、酃垂啥ɡ淼哪娑ɡ碓谟脝栴}描述時(shí),不能說成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形。

  初二數(shù)學(xué)勾股定理規(guī)律方法

  1.勾股定理的證明實(shí)際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。

  2.勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。

  3.勾股定理在應(yīng)用時(shí)一定要注意弄清誰是斜邊誰直角邊,這是這個(gè)知識(shí)在應(yīng)用過程中易犯的主要錯(cuò)誤。

  4.勾股定理的逆定理:如果三角形的三條邊長a,b,c有下列關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形;該逆定理給出判定一個(gè)三角形是否是直角三角形的判定方法.

  5.應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形的過程主要是進(jìn)行代數(shù)運(yùn)算,通過學(xué)習(xí)加深對(duì)“數(shù)形結(jié)合”的理解.

  我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)7

  一、勾股定理

  勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

  我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”。結(jié)論為:“勾三股四弦五”。

  a2+b2=c2

  2221、如果三角形的三邊長a、b、c滿足a+b=c,那么這個(gè)三角形是直角三角形。

  2222、滿足a+b=c的3個(gè)正整數(shù)a、b、c稱為勾股數(shù)。(例如,3、4、5是一組勾股

  數(shù))。利用勾股數(shù)可以構(gòu)造直角三角形。

  二、平方根

  1、定義——一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的'平方根,也稱為二次方根。也就是說,如果x2=a,那么x就叫做a的平方根。

  2、一個(gè)正數(shù)有2個(gè)平方根,它們互為相反數(shù);0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根。

  3、求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。

  4、正數(shù)a有兩個(gè)平方根,其中正的平方根,也叫做a的算術(shù)平方根。

  例如:4的平方根是±2,其中2叫做4的算術(shù)平方根,記作=2;2的平方根是±其中2的算術(shù)平方根。

  0只有一個(gè)平方根,0的平方根也叫做0的算術(shù)平方根,即

  三、立方根

  1、定義——一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根,也稱為三次方根。也就是說,如果x=a,那么x就叫做a的立方根,數(shù)a的立方根記作“,讀作“三次根號(hào)a”。

  2、求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開立方。

  3、正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0。

  四、實(shí)數(shù)

  1、無限不循環(huán)小數(shù)稱為無理數(shù)。

  2、有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。

  3、每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示,反之,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。

  五、近似數(shù)與有效數(shù)字

  1、例如,本冊(cè)數(shù)學(xué)課本約有100千字,這里100是一個(gè)近似似數(shù)。

  2、對(duì)一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都稱為這個(gè)近似數(shù)的有效數(shù)字。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)8

  一、勾股定理:

  1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。

  2.勾股定理的證明:

  勾股定理的證明方法很多,常見的是拼圖的方法

  用拼圖的方法驗(yàn)證勾股定理的思路是:

  (1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變;

  (2)根據(jù)同一種圖形的.面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。

  4.勾股定理的適用范圍:

  勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。

  二、勾股定理的逆定理

  1.逆定理的內(nèi)容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。

  說明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.

  2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:

  (1)確定最大邊;

  (2)算出最大邊的平方與另兩邊的平方和;

  (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

  三、勾股數(shù)

  能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù).

  四、一個(gè)重要結(jié)論:

  由直角三角形三邊為邊長所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。

  五、勾股定理及其逆定理的應(yīng)用

  解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)9

  勾股定理

  在任何一個(gè)直角三角形(Rt△)中(等腰直角三角形也算在內(nèi)),兩條直角邊的長度的平方和等于斜邊長度的平方,這就叫做勾股定理。即勾的長度的平方加股的長度的平方等于弦的長度的平方。[1]如果用a,b,c分別表示直角三角形的兩條直角邊和斜邊,那么a+b=c.

  簡(jiǎn)介

  勾股定理是余弦定理的一個(gè)特例。這個(gè)定理在中國又稱為“商高定理”(相傳大禹治水時(shí),就會(huì)運(yùn)用此定理來解決治水中的計(jì)算問題),在外國稱為“畢達(dá)哥拉斯定理”或者“百牛定理”。(畢達(dá)哥拉斯發(fā)現(xiàn)了這個(gè)定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”)。

  他們發(fā)現(xiàn)勾股定理的時(shí)間都比中國晚(中國是最早發(fā)現(xiàn)這一幾何寶藏的國家)。目前初二學(xué)生開始學(xué)習(xí),教材的證明方法大多采用趙爽弦圖,證明使用青朱出入圖。

  勾股定理是一個(gè)基本的幾何定理,是數(shù)形結(jié)合的紐帶之一。

  直角三角形兩直角邊的平方和等于斜邊的平方。如果用a、b和c分別表示直角三角形的'兩直角邊和斜邊,那么a^2+b^2=c^2。

  勾股定理內(nèi)容

  直角三角形(等腰直角三角形也算在內(nèi))兩直角邊(即“勾”“股”短的為勾,長的為股)邊長平方和等于斜邊(即“弦”)邊長的平方。

  也就是說設(shè)直角三角形兩直角邊為a和b,斜邊為c,那么a的平方+b的平方=c的平方a+b=c。

  勾股定理現(xiàn)發(fā)現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。

  中國古代著名數(shù)學(xué)家商高說:“若勾三,股四,則弦五。”它被記錄在了《九章算術(shù)》中。

  推廣

  1、如果將直角三角形的斜邊看作二維平面上的向量,將兩直角邊看作在平面直角坐標(biāo)系坐標(biāo)軸上的投影,則可以從另一個(gè)角度考察勾股定理的意義。即,向量長度的平方等于它在其所在空間一組正交基上投影長度的平方之和。

  2.勾股定理是余弦定理的特殊情況。

【初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)】相關(guān)文章:

初二數(shù)學(xué)勾股定理的知識(shí)點(diǎn)07-09

初二數(shù)學(xué)勾股定理知識(shí)點(diǎn)08-10

初二數(shù)學(xué)勾股定理的應(yīng)用的知識(shí)點(diǎn)07-11

初二數(shù)學(xué)勾股定理的知識(shí)點(diǎn)總結(jié)01-24

初二數(shù)學(xué)《勾股定理的逆定理》的知識(shí)點(diǎn)07-04

初二數(shù)學(xué)下冊(cè)勾股定理知識(shí)點(diǎn)整理07-07

初二數(shù)學(xué)勾股定理的知識(shí)點(diǎn)簡(jiǎn)析06-20

初二數(shù)學(xué)《簡(jiǎn)析勾股定理》的知識(shí)點(diǎn)歸納07-28

初二數(shù)學(xué)《勾股定理與平方根》知識(shí)點(diǎn)整理07-07