亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初一數(shù)學(xué)上冊知識點

時間:2023-11-20 11:15:30 煒玲 數(shù)學(xué) 我要投稿

初一數(shù)學(xué)上冊知識點

  在年少學(xué)習(xí)的日子里,大家最熟悉的就是知識點吧?知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。相信很多人都在為知識點發(fā)愁,以下是小編為大家整理的初一數(shù)學(xué)上冊知識點,歡迎閱讀與收藏。

初一數(shù)學(xué)上冊知識點

  初一數(shù)學(xué)上冊知識點1

  本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認(rèn)識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎(chǔ)知識:

  1、正數(shù)(positionnumber):大于0的數(shù)叫做正數(shù)。

  2、負(fù)數(shù)(negationnumber):在正數(shù)前面加上負(fù)號"-"的數(shù)叫做負(fù)數(shù)。

  3、0既不是正數(shù)也不是負(fù)數(shù)。

  4、有理數(shù)(rationalnumber):正整數(shù)、負(fù)整數(shù)、0、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

 。1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

 。2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負(fù)方向;

 。3)選取適當(dāng)?shù)拈L度為單位長度。

  6、相反數(shù)(oppositenumber):絕對值相等,只有負(fù)號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個負(fù)數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

 。2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0.

 。3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達(dá)式:a+b=b+a。

  加法結(jié)合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達(dá)式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達(dá)式:a-b=a+(-b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)同0相乘,都得0.

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達(dá)式:ab=ba

  乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達(dá)式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達(dá)式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負(fù),異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

  (1)"先乘方,再乘除,最后加減"的順序進(jìn)行;

 。2)同級運算,從左到右進(jìn)行;

 。3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。

  15、科學(xué)技術(shù)法:把一個大于10的數(shù)表示成a?10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximatenumber):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

 。1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

 。2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負(fù)數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

  (1)根據(jù)有理數(shù)在數(shù)軸上對應(yīng)的點的位置直接比較;

  (2)根據(jù)規(guī)定進(jìn)行比較:兩個正數(shù);正數(shù)與零;負(fù)數(shù)與零;正數(shù)與負(fù)數(shù);兩個負(fù)數(shù),體現(xiàn)了分類討論的數(shù)學(xué)思想;

 。3)做差法:a-b>0——a>b;

 。4)做商法:a/b>1,b>0——a>b.

  初一數(shù)學(xué)上冊知識點2

  整式加減由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。為了體現(xiàn)本章知識的特殊地位與作用,具有以下幾個特點:

  1、充分體現(xiàn)由特殊到一般,由一般到特殊的思維過程,經(jīng)歷探索數(shù)量關(guān)系和變化規(guī)律的過程,滲透辯證唯物主義思想。

  2、知識呈現(xiàn)過程盡量做到與學(xué)生已有生活經(jīng)驗密切聯(lián)系,如皮球的彈跳高度,傳數(shù)游戲等,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識和能力。

  3、讓知識的發(fā)生、發(fā)展過程得以充分暴露,重視基本知識和基本技能的學(xué)習(xí)。

  4、注意發(fā)揮例題和習(xí)題的教育功能。加強學(xué)科間的縱向聯(lián)系并注意與其他學(xué)科的橫向聯(lián)系,擴(kuò)充學(xué)生的知識面,注意適當(dāng)插入一些開放題,培養(yǎng)發(fā)散思維,適時滲透美育和德育教育。

  知識要點1。整式的有關(guān)概念

 。1)單項式:表示數(shù)與字母的乘積的代數(shù)式,叫做單項式,單獨的一個數(shù)或一個字母也是單項式,如、2πr、a,0……都是單項式。

 。2)多項式:幾個單項式的和叫做多項式。

  初一數(shù)學(xué)上冊知識點3

  第一章:豐富的圖形世界

  1、幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點、線、面、體

  ①幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 、邳c動成線,線動成面,面動成體。

  3、生活中的立體圖形

  生活中的立體圖形(按名稱分)

  柱:

  ①圓柱

 、诶庵喝庵⑺睦庵ㄩL方體、正方體)、五棱柱、……

  錐:

  ①圓錐

 、诶忮F

  球

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。

  5、正方體的平面展開圖:

  11種(經(jīng)?迹嚎荚囆问剑赫归_的圖形能否圍成正方體;正方體對面圖案)

  6、截一個正方體:

  用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  7、三視圖:

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  第二章:有理數(shù)及其運算

  1、有理數(shù)的分類

 、僬欣頂(shù)

  有理數(shù): ②零③負(fù)有理數(shù)

  有理數(shù): ①整數(shù)②分?jǐn)?shù)

  2、相反數(shù):

  只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

  4、倒數(shù):

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。

  5、絕對值:

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。

  若|a|=a,則a≥0;

  若|a|=-a,則a≤0。

  正數(shù)的絕對值是它本身;

  負(fù)數(shù)的絕對值是它的相反數(shù);

  0的絕對值是0。

  互為相反數(shù)的兩個數(shù)的絕對值相等。

  6、有理數(shù)比較大。

  正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負(fù)數(shù),絕對值大的反而小。

  7、有理數(shù)的運算:

 、傥宸N運算:加、減、乘、除、乘方

  多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  異號兩數(shù)相加,絕對值值相等時和為0;

  絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  一個數(shù)同0相加,仍得這個數(shù)。

  互為相反數(shù)的兩個數(shù)相加和為0。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

  ②有理數(shù)的運算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

 、圻\算律(5種)

  加法交換律

  加法結(jié)合律

  乘法交換律

  乘法結(jié)合律

  乘法對加法的分配律

  8、科學(xué)記數(shù)法

  一般地,一個大于10的數(shù)可以表示成a×

  10n的形式,其中1≦n<10,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)—1)

  第三章:整式及其加減

  1、代數(shù)式

  用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  注意:

 、俅鷶(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

  ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

  ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

  代數(shù)式的書寫格式:

 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

 、蹘Х?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)。

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

 、拊诒硎竞停ɑ颍┎畹拇鷶(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  2、整式:單項式和多項式統(tǒng)稱為整式。

  ①單項式:

  都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  注意:

  單獨的一個數(shù)或一個字母也是單項式;

  單獨一個非零數(shù)的次數(shù)是0;

  當(dāng)單項式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

 、诙囗検剑

  幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

 、弁愴棧

  所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  注意:

 、偻愴椨袃蓚條件:a。所含字母相同;b。相同字母的指數(shù)也相同。

 、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān);

  ③幾個常數(shù)項也是同類項。

  4、合并同類項法則:

  把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號法則

  ①根據(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。

  ②根據(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達(dá)到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。

  7、整式的運算:

  整式的加減法:(1)去括號;(2)合并同類項。

  第四章基本平面圖形

  1、線段、射線、直線

  名稱

  表示方法

  端點

  長度

  直線

  直線AB(或BA)

  直線l

  無端點

  無法度量

  射線

  射線OM

  1個

  無法度量

  線段

  線段AB(或BA)

  線段l

  2個

  可度量長度

  2、直線的性質(zhì)

 、僦本公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)

 、谶^一點的直線有無數(shù)條。

 、壑本是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

  3、線段的性質(zhì)

 、倬段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

 、趦牲c之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

 、劬段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

  4、線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉(zhuǎn)而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  7、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  9、角的性質(zhì)

 、俳堑拇笮∨c邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

 、诮堑拇笮】梢远攘,可以比較,角可以參與運算。

  10、平角和周角:

  一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。

  終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  11、多邊形:

  由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。

  連接不相鄰兩個頂點的線段叫做多邊形的對角線。

  從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。

  12、圓:

  平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。

  固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

  圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;

  由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。

  頂點在圓心的角叫做圓心角。

  第五章一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

  ①等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

 、诘仁降膬蛇呁瑫r乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

  4、一元一次方程

  只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項:

  把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。

  6、解一元一次方程的一般步驟:

 、偃シ帜

  ②去括號

 、垡祈棧ò逊匠讨械哪骋豁椄淖兎柡,從方程的一邊移到另一邊,這種變形叫移項。)

  ④合并同類項

 、輰⑽粗獢(shù)的系數(shù)化為1

  第六章數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。

  其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

  從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

  2、扇形統(tǒng)計圖

  扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計圖的特點

  條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

  折線統(tǒng)計圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

  初一數(shù)學(xué)上冊知識點4

  1、定義

  在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,并且對稱軸用點畫線表示;這時,我們也說這個圖形關(guān)于這條直線對稱。比如說圓、正方形、等腰三角形、等邊三角形、等腰梯形等。

  2、舉例

  例如等腰三角形、正方形、等邊三角形、等腰梯形和圓和正多邊形都是軸對 稱圖形.有的軸對稱圖形有不止一條對稱軸,但軸對稱圖形最少有一條對稱軸。圓有無數(shù)條對稱軸,都是經(jīng)過圓心的直線。

  要特別注意的是線段,它有兩條對稱軸,一條是這條線段所在的直線,另一條是這條線段的中垂線。

  3、性質(zhì)

  1.對稱軸是一條直線。

  2.垂直并且平分一條線段的直線稱為這條線段的垂直平分線,或中垂線。線段垂直平分線上的點到線段兩端的距離相等。

  3.在軸對稱圖形中,對稱軸兩側(cè)的對應(yīng)點到對稱軸兩側(cè)的距離相等。

  4.在軸對稱圖形中,沿對稱軸將它對折,左右兩邊完全重合。

  5.如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線

  6.圖形對稱。

  定理

  定理1:關(guān)于某條直線對稱的兩個圖形是全等形。

  定理2:如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線。

  定理3:兩個圖形關(guān)于某條直線對稱,如果對稱軸和某兩條對稱線段的延長線相交,那么交點在對稱軸上。

  定理3的逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  生活作用

  1、為了美觀,比如天安門,對稱就顯的美觀漂亮;

  2、保持平衡,比如飛機(jī)的兩翼;

  3、特殊工作的需要,比如五角星,剪紙

  初一數(shù)學(xué)上冊知識點5

  第一章 有理數(shù)

  1.正數(shù)和負(fù)數(shù)

  2.有理數(shù)

  3.有理數(shù)的加減

  4.有理數(shù)的乘除

  5.有理數(shù)的乘方

  重點:數(shù)軸、相反數(shù)、絕對值、有理數(shù)計算、科學(xué)計數(shù)法、有效數(shù)字

  難點:絕對值

  易錯點:絕對值、有理數(shù)計算

  中考必考:科學(xué)計數(shù)法、相反數(shù)(選擇題)

  第二章 整式的加減

  1.整式

  2.整式的加減

  重點:單項式與多項式的概念及系數(shù)和次數(shù)的確定、同類項、整式加減

  難點:單項式與多項式的系數(shù)和次數(shù)的確定、合并同類項

  易錯點:合并同類項、計算失誤、整數(shù)次數(shù)的確定

  中考必考:同類項、整數(shù)系數(shù)次數(shù)的確定、整式加減

  第三章 一元一次方程

  1.從算式到方程

  2.解一元一次方程----合并同類項與移項

  3.解一元一次方程----去括號去分母

  4.實際問題與一元一次方程

  重點:一元一次方程(定義、解法、應(yīng)用)

  難點:一元一次方程的解法(步驟)

  易錯點:去分母時,不含有分母項易漏乘、解應(yīng)用題時,不知道如何找等量關(guān)系

  第四章 圖形認(rèn)識實步

  1.多姿多彩的圖形

  2.直線、射線、線段

  3.角

  4.課題實習(xí)----設(shè)計制作長方形形狀的包裝紙盒

  重點:直線、射線、線段、角的認(rèn)識、中點和角平分線的相關(guān)計算、余角和補角,方位角等

  難點:中點和角平分線的相關(guān)計算、余角和補角的應(yīng)用

  易錯點:等量關(guān)系不會轉(zhuǎn)化、審題不清

  初一數(shù)學(xué)上冊知識點6

  【知識點】:

  認(rèn)識直線、線段與射線,會用字母正確讀出直線、線段和射線。

  直線:可以向兩端無限延伸;沒有端點。讀作 :直線AB或直線BA。

  線段:不能向兩端無限延伸;有兩個端點。讀作:線段AB或線段BA。

  射線:可以向一端無限延伸;有一個端點。讀作:射線AB(只有一種讀法,從端點讀起。)

  補充【知識點】:

  畫直線。

  過一點可畫無數(shù)條直線;過兩個能畫一條直線;過三點,如果三點在一條線上,經(jīng)過三點只能畫一條直線,如果這三點不在一條線上,那么經(jīng)過三點不能畫出直線。

  明確兩點之間的距離,線段比曲線、折線要短。

  直線、射線可以無限延長。因為直線沒有端點,射線只有一個端點,所以不可以測量,沒有具體的長度。如:直線長4厘米。是錯誤的。只有線段才能有具體的長度。

  初一數(shù)學(xué)上冊知識點7

  數(shù)軸的三要素:原點、正方向、單位長度(三者缺一不可)。

  任何一個有理數(shù),都可以用數(shù)軸上的一個點來表示。(反過來,不能說數(shù)軸上所有的點都表示有理數(shù))

  如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。(0的相反數(shù)是0)

  在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的側(cè),且到原點的距離相等。

  數(shù)軸上兩點表示的數(shù),右邊的總比左邊的大。正數(shù)在原點的右邊,負(fù)數(shù)在原點的左邊。

  絕對值的定義:一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。數(shù)a的絕對值記作|a|。

  正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的數(shù);0的絕對值是0。

  或絕對值的性質(zhì):除0外,絕對值為一正數(shù)的數(shù)有兩個,它們互為相反數(shù);

  互為相反數(shù)的兩數(shù)(除0外)的絕對值相等;

  任何數(shù)的絕對值總是非負(fù)數(shù),即|a|0

  比較兩個負(fù)數(shù)的大小,絕對值大的反而小。比較兩個負(fù)數(shù)的大小的步驟如下:

 、傧惹蟪鰞蓚數(shù)負(fù)數(shù)的絕對值;

  ②比較兩個絕對值的大小;

 、鄹鶕(jù)兩個負(fù)數(shù),絕對值大的反而小做出正確的判斷。

  絕對值的性質(zhì):

  ①對任何有理數(shù)a,都有|a|0

  ②若|a|=0,則|a|=0,反之亦然

  ③若|a|=b,則a=b

 、軐θ魏斡欣頂(shù)a,都有|a|=|-a|

  有理數(shù)加法法則:

 、偻杻蓴(shù)相加,取相同符號,并把絕對值相加。

 、诋愄杻蓴(shù)相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數(shù)的符號,并用較大數(shù)的絕對值減去較小數(shù)的絕對值。

 、垡粋數(shù)同0相加,仍得這個數(shù)。

  加法的交換律、結(jié)合律在有理數(shù)運算中同樣適用。

  靈活運用運算律,使用運算簡化,通常有下列規(guī)律:

 、倩橄喾吹膬蓚數(shù),可以先相加;

 、诜栂嗤臄(shù),可以先相加;

 、鄯帜赶嗤臄(shù),可以先相加;

 、軒讉數(shù)相加能得到整數(shù),可以先相加。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  有理數(shù)減法運算時注意兩變:

 、俑淖冞\算符號;

 、诟淖儨p數(shù)的性質(zhì)符號(變?yōu)橄喾磾?shù))

  有理數(shù)減法運算時注意一個不變:被減數(shù)與減數(shù)的位置不能變換,也就是說,減法沒有交換律。

  有理數(shù)的加減法混合運算的步驟:

  ①寫成省略加號的代數(shù)和。在一個算式中,若有減法,應(yīng)由有理數(shù)的減法法則轉(zhuǎn)化為加法,然后再省略加號和括號;

 、诶眉臃▌t,加法交換律、結(jié)合律簡化計算。

  (注意:減去一個數(shù)等于加上這個數(shù)的相反數(shù),當(dāng)有減法統(tǒng)一成加法時,減數(shù)應(yīng)變成它本身的相反數(shù)。)

  有理數(shù)乘法法則:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘,積仍為0。

  如果兩個數(shù)互為倒數(shù),則它們的乘積為1。(如:-2與 、 等)

  乘法的交換律、結(jié)合律、分配律在有理數(shù)運算中同樣適用。

  有理數(shù)乘法運算步驟:①先確定積的符號;

 、谇蟪龈饕驍(shù)的絕對值的積。

  乘積為1的兩個有理數(shù)互為倒數(shù)。注意:

 、倭銢]有倒數(shù)

 、谇蠓?jǐn)?shù)的倒數(shù),就是把分?jǐn)?shù)的分子分母顛倒位置。一個帶分?jǐn)?shù)要先化成假分?jǐn)?shù)。

 、壅龜(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。

  有理數(shù)除法法則:

 、賰蓚有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

 、0除以任何非0的數(shù)都得0。0不可作為除數(shù),否則無意義。

  有理數(shù)的乘方

  注意:

 、僖粋數(shù)可以看作是本身的一次方,如5=51;

 、诋(dāng)?shù)讛?shù)是負(fù)數(shù)或分?jǐn)?shù)時,要先用括號將底數(shù)括上,再在右上角寫指數(shù)。

  乘方的運算性質(zhì):

  ①正數(shù)的任何次冪都是正數(shù);

 、谪(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);

 、廴魏螖(shù)的偶數(shù)次冪都是非負(fù)數(shù);

 、1的任何次冪都得1,0的任何次冪都得0;

 、-1的偶次冪得1;-1的奇次冪得-1;

  ⑥在運算過程中,首先要確定冪的符號,然后再計算冪的絕對值。

  有理數(shù)混合運算法則:

  ①先算乘方,再算乘除,最后算加減。

  ②如果有括號,先算括號里面的。

  初一數(shù)學(xué)上冊知識點8

  一、線段、射線、直線

  1.正確理解直線、射線、線段的概念以及它們的區(qū)別:

  名稱圖形表示方法端點長度

  直線直線AB(或BA)

  直線l無端點無法度量

  射線射線OM1個無法度量

  線段線段AB(或BA)

  線段l2個可度量長度

  2.直線公理:經(jīng)過兩點有且只有一條直線。

  二、比較線段的長短

  1.線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離。

  2.比較線段長短的兩種方法:

 、賵A規(guī)截取比較法;

 、诳潭瘸叨攘勘容^法。

  3.用刻度尺可以畫出線段的中點,線段的和、差、倍、分;

  用圓規(guī)可以畫出線段的和、差、倍.

  三、角的度量與表示

  1.角:有公共端點的兩條射線組成的圖形叫做角;

  這個公共端點叫做角的頂點;

  這兩條射線叫做角的邊。

  2.角的表示法:角的符號為“∠”

  初一數(shù)學(xué)上冊知識點9

  有理數(shù)的乘方

  (1)求相同因數(shù)的積的運算叫做乘方.乘方運算的結(jié)果叫冪.

  一般地,記作,讀作:a的n次方,表示n個a相乘;其中,a是底數(shù),n是指數(shù),稱為冪。

  (2)正數(shù)的任何次冪都是正數(shù).

  負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),

  負(fù)數(shù)的偶數(shù)次冪是正數(shù).

  (3)一個數(shù)的平方為它本身,這個數(shù)是0和1;

  一個數(shù)的立方為它本身,這個數(shù)是0、1和-1。

  初一數(shù)學(xué)上冊知識點10

  1.1正數(shù)和負(fù)數(shù)

  以前學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的書叫做負(fù)數(shù)。

  以前學(xué)過的0以外的數(shù)叫做正數(shù)。

  數(shù)0既不是正數(shù)也不是負(fù)數(shù),0是正數(shù)與負(fù)數(shù)的分界。

  在同一個問題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義

  1.2有理數(shù)

  1.2.1有理數(shù)

  正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。

  整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

  1.2.2數(shù)軸

  規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸。

  數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點來表達(dá)。

  注意事項:

 、艛(shù)軸的原點、正方向、單位長度三要素,缺一不可。

  ⑵同一根數(shù)軸,單位長度不能改變。

  一般地,設(shè)是一個正數(shù),則數(shù)軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數(shù)-a的點在原點的左邊,與原點的距離是a個單位長度。

  1.2.3相反數(shù)

  只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  數(shù)軸上表示相反數(shù)的兩個點關(guān)于原點對稱。

  在任意一個數(shù)前面添上“-”號,新的數(shù)就表示原數(shù)的相反數(shù)。

  1.2.4絕對值

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。

  一個正數(shù)的絕對值是它的本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

  比較有理數(shù)的大。

  ⑴正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

  ⑵兩個負(fù)數(shù),絕對值大的反而小。

  1.3有理數(shù)的加減法

  1.3.1有理數(shù)的加法

  有理數(shù)的加法法則:

 、磐杻蓴(shù)相加,取相同的符號,并把絕對值相加。

 、平^對值不相等的餓異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

 、且粋數(shù)同0相加,仍得這個數(shù)。

  兩個數(shù)相加,交換加數(shù)的位置,和不變。

  加法交換律:a+b=b+a

  三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  加法結(jié)合律:(a+b)+c=a+(b+c)

  1.3.2有理數(shù)的減法

  有理數(shù)的減法可以轉(zhuǎn)化為加法來進(jìn)行。

  有理數(shù)減法法則:

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  a-b=a+(-b)

  1.4有理數(shù)的乘除法

  1.4.1有理數(shù)的乘法

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)同0相乘,都得0。

  乘積是1的兩個數(shù)互為倒數(shù)。

  幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù)。

  兩個數(shù)相乘,交換因數(shù)的位置,積相等。

  ab=ba

  三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

 。╝b)c=a(bc)

  一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  a(b+c)=ab+ac

  數(shù)字與字母相乘的書寫規(guī)范:

  ⑴數(shù)字與字母相乘,乘號要省略,或用“”

  ⑵數(shù)字與字母相乘,當(dāng)系數(shù)是1或-1時,1要省略不寫。

  ⑶帶分?jǐn)?shù)與字母相乘,帶分?jǐn)?shù)應(yīng)當(dāng)化成假分?jǐn)?shù)。

  用字母x表示任意一個有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數(shù)。

  一般地,合并含有相同字母因數(shù)的式子時,只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即

  ax+bx=(a+b)x

  上式中x是字母因數(shù),a與b分別是ax與bx這兩項的系數(shù)。

  去括號法則:

  括號前是“+”,把括號和括號前的“+”去掉,括號里各項都不改變符號。

  括號前是“-”,把括號和括號前的“-”去掉,括號里各項都改變符號。

  括號外的因數(shù)是正數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相同;括號外的因數(shù)是負(fù)數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相反。

  1.4.2有理數(shù)的除法

  有理數(shù)除法法則:

  除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  a÷b=a·(b≠0)

  兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

  因為有理數(shù)的除法可以化為乘法,所以可以利用乘法的運算性質(zhì)簡化運算。乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。

  1.5有理數(shù)的乘方

  1.5.1乘方

  求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當(dāng)an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。

  負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

  正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  有理數(shù)混合運算的運算順序:

 、畔瘸朔,再乘除,最后加減;

 、仆瑯O運算,從左到右進(jìn)行;

  ⑶如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行

  1.5.2科學(xué)記數(shù)法

  把一個大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。

  用科學(xué)記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是n-1。

  1.5.3近似數(shù)和有效數(shù)字

  接近實際數(shù)目,但與實際數(shù)目還有差別的數(shù)叫做近似數(shù)。

  精確度:一個近似數(shù)四舍五入到哪一位,就說精確到哪一位。

  從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。

  對于用科學(xué)記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

  第二章一元一次方程

  2.1從算式到方程

  2.1.1一元一次方程

  含有未知數(shù)的等式叫做方程。

  只含有一個未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

  分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實際問題的一種方法。

  解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。

  2.1.2等式的性質(zhì)

  等式的性質(zhì)1等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

  等式的性質(zhì)2等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

  2.2從古老的代數(shù)書說起——一元一次方程的討論⑴

  把等式一邊的某項變號后移到另一邊,叫做移項。

  2.3從“買布問題”說起——一元一次方程的討論⑵

  方程中有帶括號的式子時,去括號的方法與有理數(shù)運算中括號類似。

  解方程就是要求出其中的未知數(shù)(例如x),通過去分母、去括號、移項、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉(zhuǎn)化,這個過程主要依據(jù)等式的性質(zhì)和運算律等。

  去分母:

  ⑴具體做法:方程兩邊都乘各分母的最小公倍數(shù)

 、埔罁(jù):等式性質(zhì)2

 、亲⒁馐马棧

 、俜肿哟蛏侠ㄌ

 、诓缓帜傅捻椧惨

  2.4再探實際問題與一元一次方程

  第三章圖形認(rèn)識初步

  3.1多姿多彩的圖形

  現(xiàn)實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

  3.1.1立體圖形與平面圖形

  長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。

  長方形、正方形、三角形、圓等都是平面圖形。

  許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。

  3.1.2點、線、面、體

  幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。

  包圍著體的是面。面有平的面和曲的面兩種。

  面和面相交的地方形成線。

  線和線相交的地方是點。

  幾何圖形都是由點、線、面、體組成的,點是構(gòu)成圖形的基本元素。

  3.2直線、射線、線段

  經(jīng)過兩點有一條直線,并且只有一條直線。

  兩點確定一條直線。

  點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

  直線桑一點和它一旁的部分叫做射線。

  兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

  3.3角的度量

  角也是一種基本的幾何圖形。

  度、分、秒是常用的角的度量單位。

  把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

  3.4角的比較與運算

  3.4.1角的比較

  從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

  3.4.2余角和補角

  如果兩個角的和等于90(直角),就說這兩個角互為余角。

  如果兩個角的和等于180(平角),就說這兩個角互為補角。

  等角的補角相等。

  等角的余角相等。

  第四章數(shù)據(jù)的收集與整理

  收集、整理、描述和分析數(shù)據(jù)是數(shù)據(jù)處理的基本過程。

  4.1喜愛哪種動物的同學(xué)最多——全面調(diào)查舉例

  用劃記法記錄數(shù)據(jù),“正”字的每一劃(筆畫)代表一個數(shù)據(jù)。

  考察全體對象的調(diào)查屬于全面調(diào)查。

  4.2調(diào)查中小學(xué)生的視力情況——抽樣調(diào)查舉例

  抽樣調(diào)查是從總體中抽取樣本進(jìn)行調(diào)查,根據(jù)樣本來估計總體的一種調(diào)查。

  統(tǒng)計調(diào)查是收集數(shù)據(jù)常用的方法,一般有全面調(diào)查和抽樣調(diào)查兩種,實際中常常采用抽樣調(diào)查的方式。調(diào)查時,可用不同的方法獲得數(shù)據(jù)。除問卷調(diào)查、訪問調(diào)查等外,查閱文獻(xiàn)資料和實驗也是獲得數(shù)據(jù)的有效方法。

  利用表格整理數(shù)據(jù),可以幫助我們找到數(shù)據(jù)的分布規(guī)律。利用統(tǒng)計圖表示經(jīng)過整理的數(shù)據(jù),能更直觀地反映數(shù)據(jù)規(guī)律。

  4.3課題學(xué)習(xí)調(diào)查“你怎樣處理廢電池?”

  調(diào)查活動主要包括以下五項步驟:

  一、設(shè)計調(diào)查問卷

 、旁O(shè)計調(diào)查問卷的步驟

  ①確定調(diào)查目的;

 、谶x擇調(diào)查對象;

 、墼O(shè)計調(diào)查問題

  ⑵設(shè)計調(diào)查問卷時要注意:

 、偬釂柌荒苌婕疤釂栒叩膫人觀點;

 、诓灰釂柸藗儾辉敢饣卮鸬膯栴};

  ③提供的選擇答案要盡可能全面;

  ④問題應(yīng)簡明;

 、輪柧響(yīng)簡短。

  二、實施調(diào)查

  將調(diào)查問卷復(fù)制足夠的份數(shù),發(fā)給被調(diào)查對象。

  實施調(diào)查時要注意:

 、畔虮徽{(diào)查者講明哪些人是被調(diào)查的對象,以及他為什么成為被調(diào)查者;

 、聘嬖V被調(diào)查者你收集數(shù)據(jù)的目的。

  三、處理數(shù)據(jù)

  根據(jù)收回的調(diào)查問卷,整理、描述和分析收集到的數(shù)據(jù)。

  四、交流

  根據(jù)調(diào)查結(jié)果,討論你們小組有哪些發(fā)現(xiàn)和建議?

  五、寫一份簡單的調(diào)查報告

  初一數(shù)學(xué)上冊知識點11

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù).

  2.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a ;

  (2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  4.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.

  5.有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), .

  7.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  初一數(shù)學(xué)上冊知識點12

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);

  a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).

  2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  (3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  (3)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理數(shù)比大小:

 。1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;

 。3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個負(fù)數(shù)比大小,絕對值大的反而;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù).

  8.有理數(shù)加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  10有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.

  11有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

  (2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

 。3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;

  (4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計算的最重要的原則.

  19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.

  初一數(shù)學(xué)上冊知識點13

  本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識一些簡單的平面圖形——直線、射線、線段和角。

  一、目標(biāo)與要求

  1.能從現(xiàn)實物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。

  2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力,經(jīng)歷問題解決的過程,提高解決問題的能力。

  3.積極參與教學(xué)活動過程,形成自覺、認(rèn)真的學(xué)習(xí)態(tài)度,培養(yǎng)敢于面對學(xué)習(xí)困難的精神,感受幾何圖形的美感;倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨立思考的基礎(chǔ)上,能從小組交流中獲益,并對學(xué)習(xí)過程進(jìn)行正確評價,體會合作學(xué)習(xí)的重要性。

  二、重點

  從現(xiàn)實物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點;

  正確判定圍成立體圖形的面是平面還是曲面,探索點、線、面、體之間的關(guān)系是重點;

  畫一條線段等于已知線段,比較兩條線段的長短是一個重點,在現(xiàn)實情境中,了解線段的性質(zhì)“兩點之間,線段最短”是另一個重點。

  三、難點

  立體圖形與平面圖形之間的轉(zhuǎn)化是難點;

  探索點、線、面、體運動變化后形成的圖形是難點;

  畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。

  四、知識點、概念總結(jié)

  1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復(fù)雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。

  2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

  3.直線:幾何學(xué)基本概念,是點在空間內(nèi)沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。

  4.射線:在歐幾里德幾何學(xué)中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。

  5.線段:指一個或一個以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實線的線段或由“長劃、短間隔、點、短間隔、點、短間隔”組成的雙點長劃線的線段。

  線段有如下性質(zhì):兩點之間線段最短。

  6.兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。

  7.端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。

  線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。

  8.直線、射線、線段區(qū)別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。

  9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。

  10.角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  11.角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  12.角的符號:角的符號:∠

  13.角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  周角:等于360°的角叫做周角。

  負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

  正角:逆時針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。

  還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!

  14.幾何圖形分類

  (1)立體幾何圖形可以分為以下幾類:

  第一類:柱體;

  包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;

  棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,

  第二類:錐體;

  包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;

  棱錐體積統(tǒng)一為V=SH/3,

  第三類:球體;

  此分類只包含球一種幾何體,

  體積公式V=4πR3/3,

  其他不常用分類:圓臺、棱臺、球冠等很少接觸到。

  大多幾何體都由這些幾何體組成。

  (2)平面幾何圖形如何分類

  a.圓形

  b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……

  注:正方形既是矩形也是菱形

  初一數(shù)學(xué)上冊知識點14

  知識要點:

  1.有理數(shù)加法的意義

  (1)在小學(xué)我們學(xué)過,把兩個數(shù)合并成一個數(shù)的運算叫加法,數(shù)的范圍擴(kuò)大到有理數(shù)后,有理數(shù)的加法所表示的意義仍然是這種運算.

  (2)兩個有理數(shù)相加有以下幾種情況:

 、賰蓚正數(shù)相加;

 、趦蓚負(fù)數(shù)相加;

 、郛愄杻蓴(shù)相加;

 、苷龜(shù)或負(fù)數(shù)或零與零相加.

  (3)有理數(shù)的加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加.

  異號兩數(shù)相加,絕對值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值.

  一個數(shù)同0相加,仍得這個數(shù).

  注意:

 、儆欣頂(shù)的加法和小學(xué)學(xué)過的加法有很大的區(qū)別,小學(xué)學(xué)習(xí)的加法都是非負(fù)數(shù),不考慮符號,而有理數(shù)的加法涉及運算結(jié)果的符號;

 、谟欣頂(shù)的加法在進(jìn)行運算時,首先要判斷兩個加數(shù)的符號,是同號還是異號?是否有零?接下來確定用法則中的哪一條;

 、鄯▌t中,都是先強調(diào)符號,后計算絕對值,在應(yīng)用法則的過程中一定要“先算符號”,“再算絕對值”.

  2.有理數(shù)加法的運算律

  (1)加法交換律:a+b=b+a;

  (2)加法結(jié)合律:(a+b)+c=a+(b+c).

  根據(jù)有理數(shù)加法的運算律,進(jìn)行有理數(shù)的運算時,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)加起來,利用有理數(shù)的加法運算律,可使運算簡便.

  3.有理數(shù)減法的意義

  (1)有理數(shù)的減法的意義與小學(xué)學(xué)過的減法的意義相同.已知兩個加數(shù)的和與其中一個加數(shù),求另一個加數(shù)的運算,叫做減法.減法是加法的逆運算.

  (2)有理數(shù)的減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

  4.有理數(shù)的加減混合運算

  對于加減混合運算,可以根據(jù)有理數(shù)的減法法則,將加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算。然后可以運用加法的交換律和結(jié)合律簡化運算。

  三、重點難點:

  重點:

 、儆欣頂(shù)的加法法則和減法法則;

 、谟欣頂(shù)加法的運算律。

  難點:

  ①異號兩個有理數(shù)的加法法則;

 、趯⒂欣頂(shù)的減法運算轉(zhuǎn)化為加法運算的過程。(這一過程中要同時改變兩個符號:一個是運算符號由“-”變?yōu)椤?”;另一個是減數(shù)的性質(zhì)符號,變?yōu)樵瓉淼南喾磾?shù))

  初一數(shù)學(xué)上冊知識點15

  1、某工作,甲單獨干需用15小時完成,乙單獨干需用12小時完成,若甲先干1小時、乙又單獨干4小時,剩下的工作兩人合作,問:再用幾小時可全部完成任務(wù)?

  2、某工廠計劃26小時生產(chǎn)一批零件,后因每小時多生產(chǎn)5件,用24小時,不但完成了任務(wù),而且還比原計劃多生產(chǎn)了60件,問原計劃生產(chǎn)多少零件?

  3、某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學(xué)生就餐。

 。1)求1個大餐廳、1個小餐廳分別可供多少名學(xué)生就餐;

  (2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由。

  4、甲乙兩件衣服的成本共500元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按40%的利潤定價,在實際銷售時,應(yīng)顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲乙兩件服裝成本各是多少元?

  初一數(shù)學(xué)上冊知識點16

  1、都是數(shù)或字母的積的式子叫做單項式,單獨的一個數(shù)或一個字母也是單項式。

  2、單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  3、一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  4、幾個單項的和叫做多項式,其中,每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。

  5、多項式里次數(shù)項的次數(shù),叫做這個多項式的次數(shù)。

  6、把多項式中的同類項合并成一項,叫做合并同類項。

  合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。

  7、如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。

  8、如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。

  9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

  初一數(shù)學(xué)上冊知識點17

  同類項的概念:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。幾個常數(shù)項也叫同類項。

  判斷幾個單項式或項,是否是同類項的兩個標(biāo)準(zhǔn):

 、偎帜赶嗤。

  ②相同字母的次數(shù)也相同。

  判斷同類項時與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

  合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。

  合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  合并同類項步驟:

  (1)準(zhǔn)確的找出同類項。

 。2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。

  (3)寫出合并后的結(jié)果。

  合并同類項時注意:

  (1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0

  (2)不要漏掉不能合并的項。

  (3)只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

  (4)不是同類項千萬不能進(jìn)行合并。

  初一數(shù)學(xué)上冊知識點18

  七年級上冊數(shù)學(xué)知識點總結(jié)之有理數(shù)及其運算板塊:

  1、整數(shù)包含正整數(shù)和負(fù)整數(shù),分?jǐn)?shù)包含正分?jǐn)?shù)和負(fù)分?jǐn)?shù)。正整數(shù)和正分?jǐn)?shù)通稱為正數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)通稱為負(fù)數(shù)。

  2、正整數(shù)、0、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)這樣的數(shù)稱為有理數(shù)。

  3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。

  七年級上冊數(shù)學(xué)知識點總結(jié)之整式板塊:

  1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。

  2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  3、整式:單項式與多項式統(tǒng)稱整式。

  4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  七年級上冊數(shù)學(xué)知識點總結(jié)之一元一次方程。

  1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的值都相等的未知數(shù)的值叫做方程的解。

  2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。

  其實,七年級上冊數(shù)學(xué)知識點總結(jié)還包括很多,但是我想,萬變不離其宗。

  大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分。

  初一數(shù)學(xué)上冊知識點19

  平面圖形及其位置關(guān)系

  1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

  2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

  3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

  4、點、直線、射線和線段的表示

  在幾何里,我們常用字母表示圖形。

  一個點可以用一個大寫字母表示。

  一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

  一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

  一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

  5、點和直線的位置關(guān)系有兩種:

 、冱c在直線上,或者說直線經(jīng)過這個點。

  ②點在直線外,或者說直線不經(jīng)過這個點。

  6、直線的性質(zhì)

 。1)直線公理:經(jīng)過兩個點有且只有一條直線。

  (2)過一點的直線有無數(shù)條。

  (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

 。4)直線上有無窮多個點。

 。5)兩條不同的直線至多有一個公共點。

  7、線段的性質(zhì)

 。1)線段公理:兩點之間的所有連線中,線段最短。

  (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

 。3)線段的中點到兩端點的距離相等。

 。4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

【初一數(shù)學(xué)上冊知識點】相關(guān)文章:

初一數(shù)學(xué)知識點上冊07-14

初一數(shù)學(xué)上冊知識點07-14

初一數(shù)學(xué)知識點上冊07-16

初一數(shù)學(xué)上冊知識點07-15

初一數(shù)學(xué)上冊知識點整理01-26

蘇教版初一數(shù)學(xué)上冊知識點07-21

初一數(shù)學(xué)上冊知識點歸納01-26

初一數(shù)學(xué)上冊知識點總結(jié)11-23

初一數(shù)學(xué)上冊知識點[優(yōu)]07-21

蘇教版初一數(shù)學(xué)上冊知識點07-25