高中物理知識點總結精華【15篇】
總結是把一定階段內(nèi)的有關情況分析研究,做出有指導性的經(jīng)驗方法以及結論的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,快快來寫一份總結吧?偨Y怎么寫才不會流于形式呢?以下是小編收集整理的高中物理知識點總結,歡迎大家分享。
高中物理知識點總結1
一.時間和時刻:
、贂r刻的定義:時刻是指某一瞬時,是時間軸上的一點,相對于位置、瞬時速度、等狀態(tài)量,一般說的“2秒末”,“速度2m/s”都是指時刻。
②時間的定義:時間是指兩個時刻之間的間隔,是時間軸上的一段,通常說的“幾秒內(nèi)”,“第幾秒”都是指的時間。
二.位移和路程:
、傥灰频亩x:位移表示質點在空間的位置變化,是矢量。位移用又向線段表示,位移的大小等于又向線段的長度,位移的方向由初始位置指向末位置。
、诼烦痰亩x:路程是物體在空間運動軌跡的長度,是一個標量。在確定的兩點間路程不是確定的,它與物體的具體運動過程有關。
三.位移與路程的關系:
位移和路程是在一段時間內(nèi)發(fā)生的`,是過程量,兩者都和參考系的選取有關系。一般情況下位移的大小并不等于路程的大小。只有當物體做單方向的直線運動是兩者才相等。
1、時刻和時間間隔
(1)時刻和時間間隔可以在時間軸上表示出來。時間軸上的每一點都表示一個不同的時刻,時間軸上一段線段表示的是一段時間間隔(畫出一個時間軸加以說明)。
(2)在學校實驗室里常用秒表,電磁打點計時器或頻閃照相的方法測量時間。
2、路程和位移
(1)路程:質點實際運動軌跡的長度,它只有大小沒有方向,是標量。
(2)位移:是表示質點位置變動的物理量,有大小和方向,是矢量。它是用一條自初始位置指向末位置的有向線段來表示,位移的大小等于質點始、末位置間的距離,位移的方向由初位置指向末位置,位移只取決于初、末位置,與運動路徑無關。
(3)位移和路程的區(qū)別:
(4)一般來說,位移的大小不等于路程。只有質點做方向不變的無往返的直線運動時位移大小才等于路程。
3、矢量和標量
(1)矢量:既有大小、又有方向的物理量。
(2)標量:只有大小,沒有方向的物理量。
4、直線運動的位置和位移:在直線運動中,兩點的位置坐標之差值就表示物體的位移。
要想提高學習效率,首先要端正自己的學習態(tài)度.養(yǎng)成良好學習習慣,做好課前預習是學好物理的前提;主動高效地聽課是學好物理的關鍵;及時整理好學習筆記,課后的練習要到位,多做題才能豐富自己的解題經(jīng)驗.
高中物理知識點總結2
知識點概述
能量既不會憑空產(chǎn)生,也不會憑空消失,它只能從一種形式轉化為其他形式,或者從一個物體轉移到另一個物體,在轉化或轉移的過程中,能量的總量不變。這就是能量守恒定律,如今被人們普遍認同。
知識點總結
一、能量的轉化與守恒
1.化學能:由于化學反應,物質的分子結構變化而產(chǎn)生的能量。
2.核能:由于核反應,物質的原子結構發(fā)生變化而產(chǎn)生的能量。
3.能量守恒定律:能量既不會消滅,也不會創(chuàng)生,它只會從一種形式轉化為另一種形式,或者從一個物體轉移到另一個物體,而能的總量保持不變。
●內(nèi)容:能量既不會消滅,也不會創(chuàng)生,它只會從一種形式轉化為其他形式,或者從一個物體轉移到另一個物體,而在轉化和轉移的過程中,能量的總量保持不變。
即
E機械能1+E其它1=E機械能2+E其它2
●能量耗散:無法將釋放能量收集起來重新利用的現(xiàn)象叫能量耗散,它反映了自然界中能量轉化具有方向性。
二、能源與社會
1.可再生能源:可以長期提供或可以再生的能源。
2.不可再生能源:一旦消耗就很難再生的能源。
3.能源與環(huán)境:合理利用能源,減少環(huán)境污染,要節(jié)約能源、開發(fā)新能源。
三、開發(fā)新能源
1.太陽能
2.核能
3.核能發(fā)電
4、其它新能源:地熱能、潮汐能、風能。
能源的分類和能量的轉化
能源品種繁多,按其來源可以分為三大類:一是來自地球以外的太陽能,除太陽的輻射能之外,煤炭、石油、天然氣、水能、風能等都間接來自太陽能;第二類來自地球本身,如地熱能,原子核能(核燃料鈾、釷等存在于地球自然界);第三類則是由月球、太陽等天體對地球的引力而產(chǎn)生的能量,如潮汐能。
【一次能源】指在自然界現(xiàn)成存在,可以直接取得且不必改變其基本形態(tài)的能源,如煤炭、天然氣、地熱、水能等。由一次能源經(jīng)過加工或轉換成另一種形態(tài)的能源產(chǎn)品,如電力、焦炭、汽油、柴油、煤氣等屬于二次能源。
【常規(guī)能源】也叫傳統(tǒng)能源,就是指已經(jīng)大規(guī)模生產(chǎn)和廣泛利用的能源。表2-1所統(tǒng)計的幾種能源中如煤炭、石油、天然氣、核能等都屬一次性非再生的常規(guī)能源。而水電則屬于再生能源,如葛洲壩水電站和未來的三峽水電站,只要長江水不干涸,發(fā)電也就不會停止。煤和石油天然氣則不然,它們在地殼中是經(jīng)千百萬年形成的(按現(xiàn)在的采用速率,石油可用幾十年,煤炭可用幾百年),這些能源短期內(nèi)不可能再生,因而人們對此有危機感是很自然的。
【新能源】指以新技術為基礎,系統(tǒng)開發(fā)利用的能源。其中最引人注目的是太陽能的利用。據(jù)估計太陽輻射到地球表面的能量是目前全世界能量消費的1.3萬倍。如何把這些能量收集起來為我們所用,是科學家們十分關心的問題。植物的光合作用是自然界“利用”太陽能極為成功的范例。它不僅為大地帶來了郁郁蔥蔥的森林和養(yǎng)育萬物的糧菜瓜果,地球蘊藏的'煤、石油、天然氣的起源也與此有關。尋找有效的光合作用的模擬體系、利用太陽能使水分解為氫氣和氧氣及直接將太陽能轉變?yōu)殡娔艿榷际钱斀窨茖W技術的重要課題,一直受到各國政府和工業(yè)界的支持與鼓勵。
以上是從能源的使用進行分類的方法,若從物質運動的形式看,不同的運動形式,各有對應的能量,如機械能(包括動能和勢能)、熱能、電能、光能等等。各種形式的能量可以互相轉化,如動能可與勢能互相轉化(建筑工地打夯的落錘的上、下運動所包括的能量轉化過程);化學能可與電能互相轉化(化學電池和電解就是實現(xiàn)這種轉化的兩種過程)。在能量相互轉化過程中,盡管做功的效率因所用工具或技術不同而有差別,但是折算成同種能量時,其總值卻是不變的,這就是能量轉化和能量守恒定律,這是自然界中一條極為基本的定律(另一條為質量守恒定律),也是識破各式各樣永動機的有力判據(jù)。在能量轉化過程過中,未能做有用功的部分稱為“無用功”,通常以熱的形式表現(xiàn)。
物質體系中,分子的動能、勢能、電子能量和核能等的總和稱為內(nèi)能。內(nèi)能的絕對值至今尚無法直接測定,但體系狀態(tài)發(fā)生變化時,內(nèi)能的變化以功或熱的形式表現(xiàn),它們是可以被精確測量的。體系的內(nèi)能、熱效應和功之間的關系式為:
△E=Q+W
其中△E是體系內(nèi)能的變化,Q是體系從外界吸收的熱量,W是外界對體系所做的功。這就是著名的熱力學第一定律的數(shù)學表達式,也就是能量守恒定律的數(shù)學表達式。應用上述公式時,要注意各種物理量的正、負號,即:
△E──(+)體系內(nèi)能增加, (-)體系內(nèi)能體系減少;
Q──(+)體系吸收熱量, (-)體系放出能量;
W──(+)外界對體系做功, (-)體系對外界做功。
例如1.00 g乙醇在78.3℃時氣化,需吸收 854 J的熱,這些乙醇由液態(tài)變成氣態(tài),在101 kPa壓力下所做的體積膨脹功為63.2J,這是體系對外界所做的功,應為負值,所以該體系內(nèi)能的變化△E=[854+(- 63.2)]J=+791J,△E為正值,即體系內(nèi)能增加了791J。
能源的利用,其實就是能量的轉化過程。如煤燃燒放熱使蒸汽溫度升高的過程就是化學能轉化為蒸汽內(nèi)能的過程;高溫蒸汽推動發(fā)電機發(fā)電的過程是內(nèi)能轉化為電能的過程;電能通過電動機可轉化為機械能;電能通過白熾燈泡或熒光燈管可轉化為光能;電能通過電解槽可轉化為化學能等等。柴草、煤炭、石油和天然氣等常用能源所提供的能量都是隨化學變化而產(chǎn)生的,多種新能源的利用也與化學變化有關;瘜W變化的實質是化學鍵的改組,所以了解化學鍵及鍵能等基本概念,將有助于加深對能源問題的認識。
高中物理知識點總結3
01質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式)
2.中間時刻速度Vt/2=V平=(Vt+Vo)/2
3.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2
4.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a0;反向則a0}
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算)
4.推論Vt2=2gh
02質點的運動:
1)平拋運動
1.水平方向速度:Vx=Vo
2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
2)勻速圓周運動
1.線速度V=s/t=2r/T 2.角速度=/t=2/T=2f
3.向心加速度a=V2/r=2r=(2/T)2r
4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=r
7.角速度與轉速的關系=2n(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度():弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=42/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它們的`連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛(wèi)星繞行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛(wèi)星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半徑}
03力:
1.重力G=mg (方向豎直向下,g=9.8m/s210m/s2,作用點在重心,適用于地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(shù)(N/m),x:形變量(m)}
3.滑動摩擦力F=FN {與物體相對運動方向相反,:摩擦因數(shù),F(xiàn)N:正壓力(N)}
4.靜摩擦力0f靜fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsin (為B與L的夾角,當LB時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsin (為B與V的夾角,當VB時:f=qVB,V//B時:f=0)
高中物理知識點總結4
1.兩種電荷
(1)自然界中存在兩種電荷:正電荷與負電荷
(2)電荷守恒定律
2.庫侖定律
(1)內(nèi)容:在真空中兩個點電荷間的作用力跟它們的電荷量的乘積成正比,跟它們之間的距離的平方成反比,作用力的方向在它們的連線上.
(2)適用條件:真空中的點電荷.
點電荷是一種理想化的模型.如果帶電體本身的線度比相互作用的帶電體之間的距離小得多,以致帶電體的體積和形狀對相互作用力的影響可以忽略不計時,這種帶電體就可以看成點電荷,但點電荷自身不一定很小,所帶電荷量也不一定很少.
3.電場強度、電場線
(1)電場:帶電體周圍存在的一種物質,是電荷間相互作用的媒體.電場是客觀存在的,電場具有力的特性和能的特性.
(2)電場強度:放入電場中某一點的電荷受到的電場力跟它的電荷量的比值,叫做這一點的電場強度.定義式:
E=F/q方向:正電荷在該點受力方向.
(3)電場線:在電場中畫出一系列的從正電荷出發(fā)到負電荷終止的曲線,使曲線上每一點的切線方向都跟該點的場強方向一致,這些曲線叫做電場線.電場線的性質:
、匐妶鼍是起始于正電荷(或無窮遠處),終止于負電荷(或無窮遠處);
②電場線的疏密反映電場的強弱;
、垭妶鼍不相交;
、茈妶鼍不是真實存在的;
⑤電場線不一定是電荷運動軌跡.
(4)勻強電場:在電場中,如果各點的場強的大小和方向都相同,這樣的電場叫勻強電場.勻強電場中的電場線是間距相等且互相平行的直線.
(5)電場強度的疊加:電場強度是矢量,當空間的電場是由幾個點電荷共同激發(fā)的時候,空間某點的電場強度等于每個點電荷單獨存在時所激發(fā)的電場在該點的場強的矢量和.
4.電勢差U:電荷在電場中由一點A移動到另一點B時,電場力所做的功WAB與電荷量q的比值WAB/q叫做AB兩點間的電勢差.公式:UAB=WAB/q電勢差有正負:UAB=-UBA,一般常取絕對值,寫成U.
5.電勢φ:電場中某點的電勢等于該點相對零電勢點的電勢差.
(1)電勢是個相對的量,某點的'電勢與零電勢點的選取有關(通常取離電場無窮遠處或大地的電勢為零電勢).因此電勢有正、負,電勢的正負表示該點電勢比零電勢點高還是低.
(2)沿著電場線的方向,電勢越來越低.
6.電勢能:電荷在電場中某點的電勢能在數(shù)值上等于把電荷從這點移到電勢能為零處(電勢為零處)電場力所做的功ε=qU
7.等勢面:電場中電勢相等的點構成的面叫做等勢面.
(1)等勢面上各點電勢相等,在等勢面上移動電荷電場力不做功.
(2)等勢面一定跟電場線垂直,而且電場線總是由電勢較高的等勢面指向電勢較低的等勢面.
(3)畫等勢面(線)時,一般相鄰兩等勢面(或線)間的電勢差相等.這樣,在等勢面(線)密處場強大,等勢面(線)疏處場強小.
8.電場中的功能關系
(1)電場力做功與路徑無關,只與初、末位置有關.
計算方法有:由公式W=qEcosθ計算(此公式只適合于勻強電場中),或由動能定理計算.
(2)只有電場力做功,電勢能和電荷的動能之和保持不變.
(3)只有電場力和重力做功,電勢能、重力勢能、動能三者之和保持不變.
9.靜電屏蔽:處于電場中的空腔導體或金屬網(wǎng)罩,其空腔部分的場強處處為零,即能把外電場遮住,使內(nèi)部不受外電場的影響,這就是靜電屏蔽.
10.帶電粒子在電場中的運動
(1)帶電粒子在電場中加速
帶電粒子在電場中加速,若不計粒子的重力,則電場力對帶電粒子做功等于帶電粒子動能的增量.
(2)帶電粒子在電場中的偏轉
帶電粒子以垂直勻強電場的場強方向進入電場后,做類平拋運動.垂直于場強方向做勻速直線運動
(3)是否考慮帶電粒子的重力要根據(jù)具體情況而定.一般說來:
、倩玖W:如電子、質子、α粒子、離子等除有說明或明確的暗示以外,一般都不考慮重力(但不能忽略質量).
、趲щ婎w粒:如液滴、油滴、塵埃、小球等,除有說明或明確的暗示以外,一般都不能忽略重力.
(4)帶電粒子在勻強電場與重力場的復合場中運動
由于帶電粒子在勻強電場中所受電場力與重力都是恒力,因此可以用兩種方法處理:
、僬环纸夥;
、诘刃А爸亓Α狈.
11.示波管的原理:示波管由電子槍,偏轉電極和熒光屏組成,管內(nèi)抽成真空.如果在偏轉電極--′上加掃描電壓,同時加在偏轉電極YY′上所要研究的信號電壓,其周期與掃描電壓的周期相同,在熒光屏上就顯示出信號電壓隨時間變化的圖線.
12.電容定義:電容器的帶電荷量跟它的兩板間的電勢差的比值
[注意]電容器的電容是反映電容本身貯電特性的物理量,由電容器本身的介質特性與幾何尺寸決定,與電容器是否帶電、帶電荷量的多少、板間電勢差的大小等均無關。
(3)單位:法拉(F),1F=106μF,1μF=106pF.
13、穩(wěn)恒電流
電流---
(1)定義:電荷的定向移動形成電流.
(2)電流的方向:規(guī)定正電荷定向移動的方向為電流的方向.
在外電路中電流由高電勢點流向低電勢點,在電源的內(nèi)部電流由低電勢點流向高電勢點(由負極流向正極).
2.電流強度:------
(1)定義:通過導體橫截面的電量跟通過這些電量所用時間的比值,I=q/t
(2)在國際單位制中電流的單位是安.1mA=10-3A,1μA=10-6A
(3)電流強度的定義式中,如果是正、負離子同時定向移動,q應為正負離子的電荷量和.
2.電阻--
(1)定義:導體兩端的電壓與通過導體中的電流的比值叫導體的電阻
(2)定義式:R=U/I,單位:Ω
(3)電阻是導體本身的屬性,跟導體兩端的電壓及通過電流無關.
3.電阻定律
(1)內(nèi)容:在溫度不變時,導體的電阻R與它的長度L成正比,與它的橫截面積S成反比.
(2)公式:R=ρL/S.(3)適用條件:①粗細均勻的導線;②濃度均勻的電解液.
4.電阻率:反映了材料對電流的阻礙作用.
(1)有些材料的電阻率隨溫度升高而增大(如金屬);有些材料的電阻率隨溫度升高而減小(如半導體和絕緣體);有些材料的電阻率幾乎不受溫度影響(如錳銅和康銅).
(2)半導體:導電性能介于導體和絕緣體之間,而且電阻隨溫度的增加而減小,這種材料稱為半導體,半導體有熱敏特性,光敏特性,摻入微量雜質特性.
(3)超導現(xiàn)象:當溫度降低到絕對零度附近時,某些材料的電阻率突然減小到零,這種現(xiàn)象叫超導現(xiàn)象,處于這種狀態(tài)的物體叫超導體。
高中物理知識點總結5
1、重力
由于地球的吸引而使物體受到的力叫做重力。物體受到的重力G與物體質量m的關系是G=mg,g稱為重力加速度或自由落體加速度,與物體所處位置的高低和緯度有關。重力的方向豎直向下,在南北極或赤道上指向地心。物體各部分受到重力的等效作用點叫做重心,重心位置與物體的形狀和質量分布有關。
2、萬有引力
存在于自然界任何兩個物體之間的力。萬有引力F與兩個物體的質量m1 、m2和它們之間距離r的關系是,G稱為引力常量,適用于任何兩個物體,其大小通常取。 萬有引力的方向在兩物體的連線上。
3、彈力
發(fā)生彈性形變的物體,由于要恢復原狀而對與它接觸的物體產(chǎn)生的力。彈簧的彈力F與其形變量x之間的關系是F=kx,k稱為彈簧的勁度系數(shù),單位為N/m,與彈簧的長短、粗細、材料和橫截面積等因素有關。彈力的方向與形變的方向相反。彈簧都有彈性限度,超過彈性限度后,前述力與形變量的關系不再成立。
4、靜摩擦力
兩個相互接觸的物體,當它們發(fā)生相對運動或具有相對運動的趨勢時,在接觸面產(chǎn)生阻礙相對運動或相對運動趨勢的力叫做摩擦力。當兩個物體間只有相對運動的趨勢,而沒有相對運動,這時的摩擦力叫做靜摩擦力。兩個物體間的靜摩擦力有一個限度,兩個物體剛剛開始相對運動時,它們之間的.摩擦力稱為最大靜摩擦力。兩個物體間實際發(fā)生的靜摩擦力F在0和最大靜摩擦力Fmax之間。靜摩擦力的方向總是沿著接觸面,并且跟物體相對運動趨勢的方向相反。
5、滑動摩擦力
當一個物體在另一個物體表面滑動時,受到另一個物體阻礙它滑動的力;瑒幽Σ亮Φ拇笮「鷫毫Γ▋蓚物體表面間的垂直作用力)成正比;瑒幽Σ亮與壓力FN之間的關系是f=uFN,u稱為動摩擦因數(shù),與相互接觸的兩個物體的材料、接觸面的情況有關;瑒幽Σ亮Φ姆较蚩偸茄刂佑|面,并且跟物體的相對運動方向相反。
6、靜電力
靜止的點電荷之間的力。靜電力F與兩個點電荷q1、q2和它們之間的距離r的關系是,k稱為靜電力常量,其大小為。兩個點電荷帶同種電荷時,它們之間的作用力為斥力;兩個點電荷帶異種電荷時,它們之間的作用力為引力。靜電力也稱庫侖力。
7、電場力
試探電荷(帶電體)在電場中受到的力。電場力F與試探電荷的電荷量q之間的關系是F=Eq,E稱為電場強度,大小由電場本身決定,方向與正電荷所受電場力的方向相同,其單位為N/C。
8、安培力
通電導線在磁場中受到的力。當直導線與勻強磁場方向垂直時,導線所受安培力F與導線中電流強度I,導線的長度L,磁感應強度B之間的關系是F=BIL。安培力的方向可由左手定則確定。
9、洛倫茲力
帶電粒子在磁場中運動時受到的力。當粒子運動的方向與磁感應強度方向垂直時,粒子所受的洛倫茲力與粒子的電荷量q,粒子運動的速度v,磁感應強度B之間的關系是F=qvB。安培力的方向可由左手定則確定。安培力是大量帶電粒子所受洛倫茲力的宏觀表現(xiàn)。
10、分子力
存在于分子間的作用力。分子力比較復雜,分子間同時存在著引力和斥力,當分子間距離為r0時,引力與斥力的合力為0,當r>r0時合力表現(xiàn)為引力,r
11、核力
存在于原子核內(nèi)核子之間的一種力。核力是強相互作用的一種表現(xiàn),在原子核尺度內(nèi),核力比庫侖力大的多;核力是短程力,作用范圍在之內(nèi)。
總結
重力的本質是萬有引力,是物體和地球之間萬有引力的具體化,若不考慮地球自轉的影響,地面上的物體所受的重力等于地球對物體的引力。彈力、摩擦力、靜電力、電場力、安培力、洛倫茲力的本質是電磁相互作用。核力是一種強相互作用。還有一種基本相互作用稱為弱相互作用,弱相互作用與放射現(xiàn)象有關。四種基本相互作用構筑了力的體系。
高中物理知識點總結6
一、第一章靜電場
1、電荷量:電荷的多少叫電荷量,用字母Q或q表示。(元電荷常用符號e表示,e=1.6×10-19C)。
自然界只存在兩種電荷:正電荷和負電荷。同號電荷相互排斥,異號電荷相互吸引。
2、點電荷:當本身線度比電荷間的距離小很多,研究相互作用時,該帶電體的形狀可忽略,相當于一個帶電的點,叫點電荷。
3、庫侖定律:真空中兩個靜止的點電荷之間的作用力與這兩個電荷所帶電荷量的乘積成正比,與它們之間距離的平方成反比,作用力的方向沿著這兩個點電荷的連線。公式:,N﹒m2/C2。
4、電場力(靜電力):電場對放入其中的電荷的作用力稱為電場力。
5、電場強度:放入電場中一點的電荷所受的電場力跟電荷量的比值。
。1)公式:(N/C)
。2)點電荷的場強公式:
。3)場強的方向:正電荷(負電荷)受的電場力方向與該點場強方向相同(相反)。
6、電場線:用來描述電場的可以模擬但不真實存在的線。
7、電場線的性質:
(1)電場線起始于正電荷或無窮遠,終止于無窮遠或負電荷;
。2)任何兩條電場線不會相交;
。3)靜電場中,電場線不形成閉合線;
。4)電場線的疏密代表場強強弱。
8、勻強電場:場強大小和方向都相同的電場叫勻強電場。電場線相互平行且均勻分布時表明是勻強電場。
9、電勢:電荷在電場中某一點的電勢能與它電荷量的比值。
公式:,10、等勢面特點:
。1)電場線與等勢面垂直,(2)沿等勢面移動電荷,靜電力不做功。
11、電勢差:,(電勢差的正負表示兩點間電勢的高低)
12、電勢差與靜電力做功:
表示A、B兩點的電勢差在數(shù)值上等于單位正電荷從A點移到B點,電場力所做的功。
13、電場力做功與電勢能的關系:
當電場力做正功時,電勢能減少;電場力做負功時,電勢能增加。
14、電勢差與電場強度的關系:在勻強電場中,沿電場線方向的兩點間的電勢差等于場強與這兩點間距離的乘積;場強的大小等于沿場強方向每單位距離上的電勢差;沿電場線的方向電勢越來越低。
15、
。1)(定義式),(決定式)電容的單位是法拉(F)決定平行板電容器電容大小的因素是兩極板的正對面積、兩極板的距離以及兩極板間的電介質。
。2)對于平行板電容器有關的Q、E、U、C的討論時要注意兩種情況:Ⅰ、保持兩板與電源相連,則電容器兩極板間的電壓U不變。Ⅱ、充電后斷開電源,則帶電量Q不變
16、帶電粒子在電場中運動:
。1)帶電粒子在電場中平衡。(二力平衡)
。2)帶電粒子的加速:動力學分析及功能關系分析:經(jīng)常用
(3)帶電粒子的.偏轉:動力學分析:帶電粒子以速度V0垂直于電場線方向飛入兩帶電平行板產(chǎn)生的勻強電場中,受到恒定的與初速度方向成900角的電場力作用而做勻變速曲線運動(類平拋運動)。
常用到的公式:,, 二、第二章恒定電流
1、通過導體橫截面的電荷量:(元電荷)電流強度的定義:
2、電源電動勢:,(非靜電力把正電荷從負極移送到正極所做功跟被移送的電荷量的比值)
3、電阻串聯(lián)、并聯(lián):
串聯(lián)特點:
并聯(lián)電路特點:
4、
(1)歐姆定律:
。2)電功率:
(3)閉合電路歐姆定律:(上圖中R=R1+R2)路端電壓:
5、電源熱功率:
電源效率:
電功:
電熱:
電功率:
(1)對于純電阻電路:
(2)對于非純電阻電路:
6、電阻定律:(ρ為導體的電阻率,R與導體材料性質、、導體橫截面積、長度有關)
三、第三章磁場
1、安培力:磁場對電流的作用力。方向----用左手定則判定:伸開左手,使大拇指跟其余四個手指垂直,并且都跟手掌在一個平面內(nèi),把手放入磁場中,讓磁感線垂直穿入手心,并使伸開的四指指向電流的方向,那么,拇指所指的方向,就是通電導線在磁場中的受力方向。
2、磁感應強度:磁場中垂直于磁場方向的通電導線所受到的磁場力F與導線長度L、導線中電流I的乘積IL的比值,叫做通電導線所在位置的磁感應強度。條件:磁感應單位是特斯拉(T)
3、洛侖茲力:
。1)洛倫茲力對帶電粒子永遠不做功,帶電粒子在勻強磁場中做勻速圓周運動。
。2)B與方向垂直時,方向:左手定則,處理方法:勻速圓周運動的半徑:,周期:
4、磁通量:(適用),單位是韋伯(Wb)
高中物理知識點總結7
1、1785年法國物理學家?guī)靵觯航柚ㄎ牡显S扭秤裝置并類比萬有引力定律,通過實驗發(fā)現(xiàn)了電荷之間的相互作用規(guī)律——庫侖定律。
2、1826年德國物理學家xxx:通過實驗得出導體中的電流跟它兩端的電壓成正比,跟它的電阻成反比即xxx定律。
3、1820年,丹麥物理學家xxx:電流可以使周圍的磁針發(fā)生偏轉,稱為電流的磁效應。
4、1831年英國物理學家法拉第:發(fā)現(xiàn)了由磁場產(chǎn)生電流的條件和規(guī)律——電磁感應現(xiàn)象。
5、1834年,俄國物理學家楞次:確定感應電流方向的定律——楞次定律。
6、1864年英國物理學家xxx韋:預言了電磁波的'存在,指出光是一種電磁波,并從理論上得出光速等于電磁波的速度,為光的電磁理論奠定了基礎。
7、1888年德國物理學家赫茲:用萊頓瓶所做的實驗證實了電磁波的存在并測定了電磁波的傳播速度等于光速并率先發(fā)現(xiàn)“光電效應現(xiàn)象”。
高中物理知識點總結8
一、力學
1、1638年,意大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;并在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);
2、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因。
同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續(xù)以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
3、1687年,英國科學家牛頓在《自然哲學的數(shù)學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。
4、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經(jīng)典力學不適用于微觀粒子和高速運動物體。
5、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察-假設-數(shù)學推理的方法,詳細研究了拋體運動。
6、人們根據(jù)日常的觀察和經(jīng)驗,提出“地心說”,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了“日心說”,大膽反駁地心說。
7、17世紀,德國天文學家開普勒提出開普勒三大定律;
8、牛頓于1687年正式發(fā)表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較準確地測出了引力常量;
9、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈應用萬有引力定律,計算并觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發(fā)現(xiàn)冥王星。10、我國宋朝發(fā)明的火箭是現(xiàn)代火箭的鼻祖,與現(xiàn)代火箭原理相同;
俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。
11、1957年10月,蘇聯(lián)發(fā)射第一顆人造地球衛(wèi)星;
1961年4月,世界第一艘載人宇宙飛船“東方1號”帶著尤里加加林第一次踏入太空。
二、電磁學
12、1785年法國物理學家?guī)靵隼门こ訉嶒灠l(fā)現(xiàn)了電荷之間的相互作用規(guī)律庫侖定律,并測出了靜電力常量k的值。
13、16世紀末,英國人吉伯第一個研究了摩擦是物體帶電的現(xiàn)象。18世紀中葉,美國人富蘭克林提出了正、負電荷的概念。
1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統(tǒng)一起來,并發(fā)明避雷針。
14、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
15、1837年,英國物理學家法拉第最早引入了電場概念,并提出用電場線表示電場。16、1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律。
17、1911年,荷蘭科學家昂納斯發(fā)現(xiàn)大多數(shù)金屬在溫度降到某一值時,都會出現(xiàn)電阻突然降為零的現(xiàn)象超導現(xiàn)象。
18、19世紀,焦耳和楞次先后各自獨立發(fā)現(xiàn)電流通過導體時產(chǎn)生熱效應的規(guī)律,即焦耳定律。19、1820年,丹麥物理學家奧斯特發(fā)現(xiàn)電流可以使周圍的小磁針發(fā)生偏轉,稱為電流磁效應。
20、法國物理學家安培發(fā)現(xiàn)兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,并總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。
21、荷蘭物理學家洛倫茲提出運動電荷產(chǎn)生了磁場和磁場對運動電荷有作用力(洛倫茲力)的觀點。
22、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。23、1932年,美國物理學家勞倫茲發(fā)明了回旋加速器能在實驗室中產(chǎn)生大量的高能粒子。(最大動能僅取決于磁場和D形盒直徑,帶電粒子圓周運動周期與高頻電源的周期相同)24、1831年英國物理學家法拉第發(fā)現(xiàn)了由磁場產(chǎn)生電流的條件和規(guī)律電磁感應定律。
25、1834年,俄國物理學家楞次發(fā)表確定感應電流方向的定律楞次定律。
26、1835年,美國科學家亨利發(fā)現(xiàn)自感現(xiàn)象(因電流變化而在電路本身引起感應電動勢的現(xiàn)象),日光燈的工作原理即為其應用之一。
三、熱學
27、1827年,英國植物學家布朗發(fā)現(xiàn)懸浮在水中的花粉微粒不停地做無規(guī)則運動的現(xiàn)象布朗運動。
28、1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產(chǎn)生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變?yōu)橛杏玫墓Χ划a(chǎn)生其他影響,稱為開爾文表述。29、1848年開爾文提出熱力學溫標,指出絕對零度是溫度的下限。
30、19世紀中葉,由德國醫(yī)生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最后確定能量守恒定律。
21、1642年,科學家托里拆利提出大氣會產(chǎn)生壓強,并測定了大氣壓強的值。四年后,帕斯卡的研究表明,大氣壓隨高度增加而減小。
1654年,為了證實大氣壓的存在,德國的馬德堡市做了一個轟動一時的實驗馬德堡半球實驗。
四、波動學
22、17世紀,荷蘭物理學家惠更斯確定了單擺周期公式。周期是2s的單擺叫秒擺。23、1690年,荷蘭物理學家惠更斯提出了機械波的波動現(xiàn)象規(guī)律惠更斯原理。24、奧地利物理學家多普勒(1803-1853)首先發(fā)現(xiàn)由于波源和觀察者之間有相對運動,使觀察者感到頻率發(fā)生變化的現(xiàn)象多普勒效應。
五、光學
25、1621年,荷蘭數(shù)學家斯涅耳找到了入射角與折射角之間的規(guī)律折射定律。26、1801年,英國物理學家托馬斯?楊成功地觀察到了光的干涉現(xiàn)象。
27、1818年,法國科學家菲涅爾和泊松計算并實驗觀察到光的圓板衍射泊松亮斑。28、1864年,英國物理學家麥克斯韋發(fā)表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。
29、1887年,德國物理學家赫茲用實驗證實了電磁波的存在,并測定了電磁波的傳播速度等于光速。30、1894年,意大利馬可尼和俄國波波夫分別發(fā)明了無線電報,揭開無線電通信的新篇章。
31、1800年,英國物理學家赫歇耳發(fā)現(xiàn)紅外線;1801年,德國物理學家里特發(fā)現(xiàn)紫外線;
1895年,德國物理學家倫琴發(fā)現(xiàn)X射線(倫琴射線),并為他夫人的手拍下世界上第一張X射線的人體照片。
32、激光被譽為20世紀的“世紀之光”。
六、波粒二象性
33、1900年,德國物理學家普朗克為解釋物體熱輻射規(guī)律提出能量子假說:物質發(fā)射或吸收能量時,能量不是連續(xù)的(電磁波的發(fā)射和吸收不是連續(xù)的),而是一份一份的,每一份就是一個最小的能量單位,即能量子E=hν,把物理學帶進了量子世界;
受其啟發(fā)1905年愛因斯坦提出光子說,成功地解釋了光電效應規(guī)律,因此獲得諾貝爾物理獎。
34、1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時康普頓效應,證實了光的粒子性。
35、1913年,丹麥物理學家玻爾提出了自己的原子結構假說,最先得出氫原子能級表達式,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發(fā)展奠定了基礎。
36、1885年,瑞士的中學數(shù)學教師巴耳末總結了氫原子光譜的波長規(guī)律巴耳末系。37、1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現(xiàn)出波動性;1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現(xiàn)象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高。
七、相對論
38、物理學晴朗天空上的兩朵烏云:①邁克遜-莫雷實驗相對論(高速運動世界),②熱輻射實驗量子論(微觀世界);
39、19世紀和20世紀之交,物理學的`三大發(fā)現(xiàn):X射線的發(fā)現(xiàn),電子的發(fā)現(xiàn),放射性的發(fā)現(xiàn)。
40、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理不同的慣性參考系中,一切物理規(guī)律都是相同的;
、诠馑俨蛔冊聿煌膽T性參考系中,光在真空中的速度一定是c不變。狹義相對論的其他結論:
①時間和空間的相對性長度收縮和動鐘變慢(或時間膨脹)
、谙鄬φ撍俣券B加:光速不變,與光源速度無關;一切運動物體的速度不能超過光速,即光速是物質運動速度的極限。
、巯鄬φ撡|量:物體運動時的質量大于靜止時的質量。
41、愛因斯坦還提出了相對論中的一個重要結論質能方程式:E=mc2。
八、原子物理學
42、1858年,德國科學家普呂克爾發(fā)現(xiàn)了一種奇妙的射線陰極射線(高速運動的電子流)。43、1897年,湯姆生利用陰極射線管發(fā)現(xiàn)了電子,指出陰極射線是高速運動的電子流。說明原子可分,有復雜內(nèi)部結構,并提出原子的棗糕模型。1906年,獲得諾貝爾物理學獎。44、1909-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,并提出了原子的核式結構模型。由實驗結果估計原子核直徑數(shù)量級為10-15m。
45、1896年,法國物理學家貝克勒爾發(fā)現(xiàn)天然放射現(xiàn)象,說明原子核有復雜的內(nèi)部結構。天然放射現(xiàn)象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變后新核處于激發(fā)態(tài),向低能級躍遷時輻射出的。衰變快慢與原子所處的物理和化學狀態(tài)無關。46、1919年,盧瑟福用α粒子轟擊氮核,第一次實現(xiàn)了原子核的人工轉變,發(fā)現(xiàn)了質子,并預言原子核內(nèi)還有另一種粒子中子。47、1932年,盧瑟福學生查德威克于在α粒子轟擊鈹核時發(fā)現(xiàn)中子,獲得諾貝爾物理獎。48、1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發(fā)現(xiàn)了正電子和人工放射性同位素。
49、1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發(fā)現(xiàn)了兩種放射性更強的新元素釙(Po)鐳(Ra)。
50、1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發(fā)生裂變。
51、1942年,在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成)。
52、1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是:利用強激光產(chǎn)生的高壓照射小顆粒核燃料。
53、粒子分三大類:媒介子-傳遞各種相互作用的粒子,如:光子;輕子-不參與強相互作用的粒子,如:電子、中微子;
強子-參與強相互作用的粒子,如:重子(質子、中子、超子)和介子。
高中物理知識點總結9
高中物理知識點總結如下:
1.力學:力學有六大自然學現(xiàn)象,分別是:力的作用效果、力的大小、方向、作用點等。
2.動力學:動力學研究的是物體速度和加速度的關系。
3.電磁學:電磁學包括電學和磁學兩個部分。
4.光學:光學是光學理論,包括光和色的'特性、光的波動性、光的衍射、折射和干涉等等。
5.量子力學:量子力學是研究微觀粒子運動規(guī)律的物理學,主要研究原子、分子、凝聚態(tài)物質,以及原子核和基本粒子的結構、性質的基礎理論。
以上是高中物理知識點總結,希望對你有所幫助。
高中物理知識點總結10
一、重力,基本相互作用
1、力和力的圖示
2、力能改變物體運動狀態(tài)
3、力能力物體發(fā)生形變
4、力是物體與物體之間的相互作用
。1)施力物體
(2)受力物體
。3)力產(chǎn)生一對力
5、力的三要素:大小,方向,作用點
6、重力:由于地球吸引而受的力大小G=mg方向:豎直向下重心:重力的作用點均勻分布、形狀規(guī)則物體:幾何對稱中心質量分布不均勻,由質量分布決定重心質量分部均勻,由形狀決定重心
7、四種基本作用
。1)萬有引力
。2)電磁相互作用
(3)強相互作用
。4)弱相互作用
二、彈力
1、性質:接觸力
2、彈性形變:當外力撤去后物體恢復原來的形狀
3、彈力產(chǎn)生條件
(1)擠壓
。2)發(fā)生彈性形變
4、方向:與形變方向相反
5、常見彈力
。1)壓力垂直于接觸面,指向被壓物體
(2)支持力垂直于接觸面,指向被支持物體
。3)拉力:沿繩子收縮方向
。4)彈簧彈力方向:可短可長沿彈簧方向與形變方向相反
6、彈力大小計算(胡克定律)F=kx
k勁度系數(shù)N/mx伸長量
三、摩擦力產(chǎn)生條件:
1、兩個物體接觸且粗糙
2、有相對運動或相對運動趨勢靜摩擦力產(chǎn)生條件:
1、接觸面粗糙
2、相對運動趨勢
靜摩擦力方向:沿著接觸面與運動趨勢方向相反大小:0≤f≤Fmax滑動摩擦力產(chǎn)生條件:
1、接觸面粗糙
2、有相對滑動大。篺=μN
N相互接觸時產(chǎn)生的彈力N可能等于G
μ動摩擦因系數(shù)沒有單位
四、力的合成與分解方法:等效替代
力的合成:求與兩個力或多個力效果相同的一個力
求合力方法:平行四邊形定則(合力是以兩分力為鄰邊的平行四邊形對角線,對角線長度即合力的大小,方向即合力的方向)合力與分力的關系
1、合力可以比分力大,也可以比分力小
2、夾角θ一定,θ為銳角,兩分力增大,合力就增大
3、當兩個分力大小一定,夾角增大,合力就增大,夾角增大,合力就減。0<θ<π)
4、合力最大值F=F1+F2最小值F=|F1-F2|力的分解:已知合力,求替代F的兩個力原則:分力與合力遵循平行四邊形定則本質:力的'合成的逆運算
找分力的方法:
1、確定合力的作用效果
2、形變效果
3、由分力,合力用平行四邊形定則連接
4、作圖或計算(計算方法:余弦定理)
五、受力分析步驟和方法
1.步驟
(1)研究對象:受力物體
。2)隔離開受力物體
。3)順序:
①場力(重力,電磁力......)
、趶椓Γ
繩子拉力沿繩子方向
輕彈簧壓縮或伸長與形變方向相反輕桿可能沿桿,也可能不沿桿面與面接觸優(yōu)先垂直于面的
、勰Σ亮
靜摩擦力方向
求2.假設
滑動摩擦力方向與相對滑動方向相反或與相對速度相反
、芷渌Γ}中已知力)
(4)檢驗是否有施力物體
六、摩擦力分析靜摩擦力分析
1、條件①接觸且粗糙②相對運動趨勢
2、大小0≤f≤Fmax
3、方法:
①假設法
、谄胶夥ɑ瑒幽Σ亮Ψ治
1、接觸時粗糙
2、相對滑動
七、補充結論
1.斜面傾角θ
動摩擦因系數(shù)μ=tanθ物體在斜面上勻速下滑
μ>tanθ物體保持靜止μ<tanθ物體在斜面上加速下滑
2.三力合力最小值
若構成一個三角形則合力為0若不能則F=Fmax-(F1+F2)三力最大值三個力相加
高中物理知識點總結11
1、滑動摩擦力:一個物體在另一個物體表面上存在相對滑動的時候,要受到另一個物體阻礙它們相對滑動的力,這種力叫做滑動摩擦力.
(1)產(chǎn)生條件:
①接觸面是粗糙;
、趦晌矬w接觸面上有壓力;
、蹆晌矬w間有相對滑動.
(2)方向:總是沿著接觸面的切線方向與相對運動方向相反.
(3)大小-滑動摩擦定律
滑動摩擦力跟正壓力成正比,也就跟一個物體對另一個物體表面的垂直作用力成正比。即其中的FN表示正壓力,不一定等于重力G。為動摩擦因數(shù),取決于兩個物體的材料和接觸面的粗糙程度,與接觸面的面積無關。
2、靜摩擦力:當一個物體在另一個物體表面上有相對運動趨勢時,所受到的另一個物體對它的力,叫做靜摩擦力.
(1)產(chǎn)生條件:①接觸面是粗糙的;②兩物體有相對運動的趨勢;③兩物體接觸面上有壓力.
(2)方向:沿著接觸面的切線方向與相對運動趨勢方向相反.
(3)大。红o摩擦力的大小與相對運動趨勢的強弱有關,趨勢越強,靜摩擦力越大,但不能超過最大靜摩擦力,即0ffm,具體大小可由物體的運動狀態(tài)結合動力學規(guī)律求解。
必須明確,靜摩擦力大小不能用滑動摩擦定律F=FN計算,只有當靜摩擦力達到最大值時,其最大值一般可認為等于滑動摩擦力,既Fm=FN
3、摩擦力與物體運動的關系
、倌Σ亮Φ姆较蚩偸桥c物體間相對運動(或相對運動的趨勢)的方向相反。而不一定與物體的運動方向相反。
如:課本上的皮帶傳動圖。物體向上運動,但物體相對于皮帶有向下滑動的趨勢,故摩擦力向上。
、谀Σ亮偸亲璧K物體間的相對運動的'。而不一定是阻礙物體的運動的。
如上例,摩擦力阻礙了物體相對于皮帶向下滑,但恰恰是摩擦力使物體向上運動。
注意:以上兩種情況中,相對兩個字一定不能少。
這牽涉到參照物的選擇。一般情況下,我們說物體運動或靜止,是以地面為參照物的。而牽涉到相對運動,實際上是規(guī)定了參照物。如A相對于B,則必須以B為參照物,而不能以地面或其它物體為參照物。
、勰Σ亮Σ灰欢ㄊ亲枇,也可以是動力。摩擦力不一定使物體減速,也可能使物體加速。
、苁莒o摩擦力的物體不一定靜止,但一定保持相對靜止。
、莼瑒幽Σ亮Φ姆较虿灰欢ㄅc運動方向相反
高中物理知識點總結12
勻變速直線運動定義
勻變速直線運動是高中物理最基本,同時也是考察做多的一種運動形式。
物體在一條直線上運動,如果在相等的時間內(nèi)速度的變化量相等,這種運動就叫做勻變速直線運動。
也可定義為:沿著一條直線,且加速度不變的運動,叫做勻變速直線運動。
勻變速直線運動圖像
在勻變速直線運動中,如果物體的速度隨著時間均勻增加,這個運動叫做勻加速直線運動;對應著加速度與速度方向相同。
如果物體的速度隨著時間均勻減小,這個運動叫做勻減速直線運動;對應著加速度與速度方向相反。
做勻變速直線運動的前提條件
物體到底在滿足什么前提下才能做勻變速直線運動呢?
這個前提條件,主要是對比曲線運動的前提條件來說的。物體作勻變速直線運動須同時符合下述兩條:
1,受恒外力作用(保證加速度方向大小不變);
2,合外力與初速度在同一直線上(保證物體運動方向不變)。
當合外力的方向與物體運動方向一致時,為勻加速直線運動;當合外力方向與物體運動方向相反時,為勻減速直線運動。
勻變速直線運動的公式總結
勻變速直線運動有四個最基本公式,分別如下:
(1)勻變速直線運動速度與時間的關系公式
vt=v0+at
(2)勻變速直線運動位移與時間的關系公式
x=v0t+1/2at2
(3)勻變速直線運動位移與速度的關系公式
vt2-v02=2ax
(4)位移與平均速度的關系公式
x=(vt+v0)·t/2
勻變速直線運動公式使用與選擇
一般來說,題目中含有t的時候,優(yōu)先考慮的是第一個、第二個方程。
題目沒有時間t時,優(yōu)先考慮的是第三個方程(位移和速度關系)。
從上述的四個公式中不難看出,研究勻變速直線運動主要是研究五個物理量:s、t、a、v0、vt,這五個物理量中只有三個是獨立的,可以任意選定。
只要其中三個物理量確定之后,另外兩個就確定了。
每個公式中只有其中的四個物理量,當已知某三個而要求另一個時,往往選定一個公式就可以了。
如果兩個勻變速直線運動有三個物理量對應相等,那么另外的兩個物理量也一定對應相等。例如:在忽略空氣阻力的條件下,豎直上拋物體的'上升、回落過程對照:最小速度、加速度大小、位移大小相同,因此經(jīng)歷時間和速度大小一定相同。
以上五個物理量中,除時間t外,s、v0、vt、a這四個量都是矢量。
一般做題的過程中選定v0的方向為正方向,以t=0時刻的位移為零,這時s、vt和a的正負就都有了確定的物理意義。當然,這是王尚個人的意見,有的老師喜歡規(guī)定a的方向為正方向,這也是可以的。正方向的規(guī)定并不嚴格,但是我們在運用上述四個公式的時候,必須帶入矢量進行運算,否則就很容易導致計算錯誤。
勻變速直線運動中幾個常用的推論
在打點計時器及其紙帶數(shù)據(jù)處理的實驗中,我們用公式Δs=aT2來求加速度。
這說明任意相鄰相等時間內(nèi)的位移之差相等。這個結論可以推廣位:sm-sn=(m-n)aT2;
某段時間的中間時刻的即時速度等于該段時間內(nèi)的平均速度,這個問題也總是出現(xiàn)在打點計時器的實驗題中,大家要注意。
提醒大家的是,某段位移的中間位置的即時速度不小于該段位移內(nèi)的平均速度。
勻變速直線運動特例:自由落體運動
自由落體運動是一種常見且?嫉倪\動模式,是一種特殊的勻變速直線運動。這種運動的特點是初速度為零,加速度為g的運動模式。
地球表面附近的上空可看作是恒定的重力場.如不考慮大氣阻力,在該區(qū)域內(nèi)的自由落體運動是勻加速直線運動.其加速度恒等于重力加速度g。
雖然地球的引力和物體到地球中心距離的平方成反比,但地球的半徑遠大于自由落體所經(jīng)過的路程,所以引力在地面附近可看作是不變的,自由落體的加速度即是一個不變的常量.
自由落體運動,是初速為零的勻加速直線運動。
初速度為零的勻變速直線運動規(guī)律
前1秒、前2秒、前3秒……內(nèi)的位移之比為1∶4∶9∶……
第1個t內(nèi)、第2個t內(nèi)、……、第n個t內(nèi)(相同時間內(nèi))的位移之比1:3:5:……:(2n-1)。
通過第1個s、第2個s、第3個s、……、第n個s(通過連續(xù)相等的位移)所需時間之比t1:t2:……:tn=1:√2:√3……:√n。
對末速為零的勻變速直線運動,同樣也可以類比運用這些規(guī)律。
高中物理知識點總結13
。1)定義:電勢相等的點構成的面。
。2)特點:
等勢面上各點電勢相等,在等勢面上移動電荷,電場力不做功。
等勢面與電場線垂直
兩等勢面不相交
等勢面的密集程度表示場強的大。菏枞趺軓姟
畫等勢面時,相鄰等勢面間的電勢差相等。
。3)判斷電場線上兩點間的`電勢差的大。嚎拷鼒鲈矗▓鰪姶螅┑膬砷g的電勢差大于遠離場源(場強。┫嗟染嚯x兩點間的電勢差。
高中物理知識點總結14
力和運動學:
力是物體之間的相互作用。運動學研究物體位置隨時間的變化。
牛頓運動定律是高中物理的核心內(nèi)容:一切物體總保持勻速直線運動狀態(tài)或靜止狀態(tài),除非作用在它上面的力迫使它改變這種狀態(tài)為止。
機械能守恒定律和能量守恒定律:
能量守恒定律是指能量既不會憑空產(chǎn)生,也不會憑空消失,它只會從一種形式轉化為另一種形式,或者從一個物體轉移到其他物體,而能量的總玳保持不變。
機械能守恒定律是指在一個只有保守力(見保守力與耗散力)做功的物理系{(見牛頓運動定律;亦稱“勢力學”)}中,動能和勢能相互轉化,但機械能的總量保持不變。
振動和波動:
振動是指物體沿直線或曲線并經(jīng)過其平衡位置所作的往復運動。
波動是指振動在介質中的傳播。
熱力學定律:
熱力學第一定律(能量守恒定律)世間萬物總能量不會變,但能源可由一種形式轉為另一種形式。
熱力學第二定律(熵增定律)不可能把熱從低溫物體傳到高溫物體而不產(chǎn)生其他影響;不可能從單一熱源取熱使之完全轉換為有用的功而不產(chǎn)生其他影響;不可逆熱力過程中熵的微增量總是大于零。
總的來說,高中物理知識點需要掌握基本的物理概念、原理和數(shù)學方法,注重理解和應用,掌握物理實驗技能,并通過練習加深對知識點的理解和運用能力。
高中物理知識點
1.氣體的狀態(tài)參量:
溫度:宏觀上,物體的冷熱程度 高一;微觀上,物體內(nèi)部分子無規(guī)則運動的劇烈程度的標志,熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據(jù)的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產(chǎn)生持續(xù)、均勻的壓力,標準大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態(tài)方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T為熱力學溫度(K)}
注:
(1)理想氣體的內(nèi)能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
高中物理重要知識點
1.光本性學說的發(fā)展簡史
(1)牛頓的微粒說:認為光是高速粒子流.它能解釋光的直進現(xiàn)象,光的反射現(xiàn)象.
(2)惠更斯的波動說:認為光是某種振動,以波的形式向周圍傳播.它能解釋光的干涉和衍射現(xiàn)象.
2、光的干涉
光的干涉的條件是:有兩個振動情況總是相同的波源,即相干波源。(相干波源的頻率必須相同)。形成相干波源的方法有兩種:⑴利用激光(因為激光發(fā)出的是單色性極好的光)。⑵設法將同一束光分為兩束(這樣兩束光都來源于同一個光源,因此頻率必然相等)。下面4個圖分別是利用雙縫、利用楔形薄膜、利用空氣膜、利用平面鏡形成相干光源的示意圖。
2.干涉區(qū)域內(nèi)產(chǎn)生的亮、暗紋
、帕良y:屏上某點到雙縫的光程差等于波長的整數(shù)倍,即δ=nλ(n=0,1,2,……)
⑵暗紋:屏上某點到雙縫的'光程差等于半波長的奇數(shù)倍,即δ=(n=0,1,2,……)
相鄰亮紋(暗紋)間的距離。用此公式可以測定單色光的波長。用白光作雙縫干涉實驗時,由于白光內(nèi)各種色光的波長不同,干涉條紋間距不同,所以屏的中央是白色亮紋,兩邊出現(xiàn)彩色條紋。
3.衍射----光通過很小的孔、縫或障礙物時,會在屏上出現(xiàn)明暗相間的條紋,且中央條紋很亮,越向邊緣越暗。
⑴各種不同形狀的障礙物都能使光發(fā)生衍射。
、瓢l(fā)生明顯衍射的條件是:障礙物(或孔)的尺寸可以跟波長相比,甚至比波長還小。(當障礙物或孔的尺寸小于0.5mm時,有明顯衍射現(xiàn)象。)
、窃诎l(fā)生明顯衍射的條件下當窄縫變窄時亮斑的范圍變大條紋間距離變大,而亮度變暗。
4、光的偏振現(xiàn)象:通過偏振片的`光波,在垂直于傳播方向的平面上,只沿著一個特定的方向振動,稱為偏振光。光的偏振說明光是橫波。
5.光的電磁說
⑴光是電磁波(麥克斯韋預言、赫茲用實驗證明了正確性。)
、齐姶挪ㄗV。波長從大到小排列順序為:無線電波、紅外線、可見光、紫外線、X射線、γ射線。各種電磁波中,除可見光以外,相鄰兩個波段間都有重疊。
各種電磁波的產(chǎn)生機理分別是:無線電波是振蕩電路中自由電子的周期性運動產(chǎn)生的;紅外線、可見光、紫外線是原子的外層電子受到激發(fā)后產(chǎn)生的;倫琴射線是原子的內(nèi)層電子受到激發(fā)后產(chǎn)生的;γ射線是原子核受到激發(fā)后產(chǎn)生的。
、羌t外線、紫外線、X射線的主要性質及其應用舉例。
種類產(chǎn)生主要性質應用舉例
紅外線一切物體都能發(fā)出熱效應遙感、遙控、加熱
紫外線一切高溫物體能發(fā)出化學效應熒光、殺菌、合成VD2
X射線陰極射線射到固體表面穿透能力強人體透視、金屬探傷
高中物理知識點歸納
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,F(xiàn)y=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數(shù)運算。
高中物理知識點總結15
1、大的物體不一定不能看成質點,小的物體不一定能看成質點。
2、在時間軸上n秒時指的是n秒末。第n秒指的是一段時間,是第n個1秒。第n秒末和第n+1秒初是同一時刻。
3、忽視位移的矢量性,只強調大小而忽視方向。
4、物體做直線運動時,位移的大小不一定等于路程。
5、位移也具有相對性,必須選一個參考系,選不同的參考系時,物體的位移可能不同。
6、打點計時器在紙帶上應打出輕重合適的小圓點,如遇到打出的是短橫線,應調整一下振針距復寫紙的高度,使之增大一點。
7、使用計時器打點時,應先接通電源,待打點計時器穩(wěn)定后,再釋放紙帶。
8、使用電火花打點計時器時,應注意把兩條白紙帶正確穿好,墨粉紙盤夾在兩紙帶間;使用電磁打點計時器時,應讓紙帶通過限位孔,壓在復寫紙下面。
9、"速度"一詞是比較含糊的統(tǒng)稱,在不同的語境中含義不同,一般指瞬時速率、平均速度、瞬時速度、平均速率四個概念中的一個,要學會根據(jù)上、下文辨明"速度"的含義。平常所說的"速度"多指瞬時速度,列式計算時常用的是平均速度和平均速率。
10、著重理解速度的矢量性。有的同學受初中所理解的速度概念的影響,很難接受速度的方向,其實速度的方向就是物體運動的方向,而初中所學的"速度"就是現(xiàn)在所學的平均速率。
11、平均速度不是速度的平均。
12、平均速率不是平均速度的大小。
13、物體的速度大,其加速度不一定大。
14、物體的速度為零時,其加速度不一定為零。
15、物體的速度變化大,其加速度不一定大。
16、加速度的正、負僅表示方向,不表示大小。
17、物體的加速度為負值,物體不一定做減速運動。
18、物體的加速度減小時,速度可能增大;加速度增大時,速度可能減小。
19、物體的速度大小不變時,加速度不一定為零。
20、物體的加速度方向不一定與速度方向相同,也不一定在同一直線上。
21、位移圖象不是物體的運動軌跡。
22、解題前先搞清兩坐標軸各代表什么物理量,不要把位移圖象與速度圖象混淆。
23、圖象是曲線的不表示物體做曲線運動。
24、人們得出"重的物體下落快"的錯誤結論主要是由于空氣阻力的影響。
25、嚴格地講自由落體運動的物體只受重力作用,在空氣阻力影響較小時,可忽略空氣阻力的影響,近似視為自由落體運動。
26、自由落體實驗實驗記錄自由落體軌跡時,對重物的要求是"質量大、體積小",只強調"質量大"或"體積小"都是不確切的。
27、自由落體運動中,加速度g是已知的,但有時題目中不點明這一點,我們解題時要充分利用這一隱含條件。
28、自由落體運動是無空氣阻力的理想情況,實際物體的運動有時受空氣阻力的影響過大,這時就不能忽略空氣阻力了,如雨滴下落的最后階段,阻力很大,不能視為自由落體運動。
29、自由落體加速度通?扇9.8m/s?或10m/s?,但并不是不變的,它隨緯度和海拔高度的變化而變化。
30、四個重要比例式都是從自由落體運動開始時,即初速度v0=0是成立條件,如果v0≠0則這四個比例式不成立。
31、勻變速運動的各公式都是矢量式,列方程解題時要注意各物理量的方向。
32、常取初速度v0的方向為正方向,但這并不是一定的,也可取與v0相反的方向為正方向。
33、汽車剎車問題應先判斷汽車何時停止運動,不要盲目套用勻減速直線運動公式求解。
34、找準追及問題的臨界條件,如位移關系、速度相等等。
35、用速度圖象解題時要注意圖線相交的點是速度相等的點而不是相遇處。
36、產(chǎn)生彈力的條件之一是兩物體相互接觸,但相互接觸的物體間不一定存在彈力。
37、某個物體受到彈力作用,不是由于這個物體的形變產(chǎn)生的,而是由于施加這個彈力的物體的形變產(chǎn)生的。
38、壓力或支持力的方向總是垂直于接觸面,與物體的重心位置無關。
39、胡克定律公式F=kx中的x是彈簧伸長或縮短的長度,不是彈簧的總長度,更不是彈簧原長。
40、彈簧彈力的大小等于它一端受力的大小,而不是兩端受力之和,更不是兩端受力之差。
41、桿的彈力方向不一定沿桿。
42、摩擦力的作用效果既可充當阻力,也可充當動力。
43、滑動摩擦力只以μ和N有關,與接觸面的大小和物體的運動狀態(tài)無關。
44、各種摩擦力的方向與物體的運動方向無關。
45、靜摩擦力具有大小和方向的可變性,在分析有關靜摩擦力的問題時容易出錯。
46、最大靜摩擦力與接觸面和正壓力有關,靜摩擦力與壓力無關。
47、畫力的圖示時要選擇合適的標度。
48、實驗中的兩個細繩套不要太短。
49、檢查彈簧測力計指針是否指零。
50、在同一次實驗中,使橡皮條伸長時結點的位置一定要相同。
51、使用彈簧測力計拉細繩套時,要使彈簧測力計的彈簧與細繩套在同一直線上,彈簧與木板面平行,避免彈簧與彈簧測力計外殼、彈簧測力計限位卡之間有摩擦。
52、在同一次實驗中,畫力的圖示時選定的標度要相同,并且要恰當使用標度,使力的圖示稍大一些。
53、合力不一定大于分力,分力不一定小于合力。
54、三個力的合力最大值是三個力的數(shù)值之和,最小值不一定是三個力的數(shù)值之差,要先判斷能否為零。
55、兩個力合成一個力的結果是惟一的,一個力分解為兩個力的情況不惟一,可以有多種分解方式。
56、一個力分解成的兩個分力,與原來的這個力一定是同性質的,一定是同一個受力物體,如一個物體放在斜面上靜止,其重力可分解為使物體下滑的.力和使物體壓緊斜面的力,不能說成下滑力和物體對斜面的壓力。
57、物體在粗糙斜面上向前運動,并不一定受到向前的力,認為物體向前運動會存在一種向前的"沖力"的說法是錯誤的。
58、所有認為慣性與運動狀態(tài)有關的想法都是錯誤的,因為慣性只與物體質量有關。
59、慣性是物體的一種基本屬性,不是一種力,物體所受的外力不能克服慣性。
60、物體受力為零時速度不一定為零,速度為零時受力不一定為零。
61、牛頓第二定律 F=ma中的F通常指物體所受的合外力,對應的加速度a就是合加速度,也就是各個獨自產(chǎn)生的加速度的矢量和,當只研究某個力產(chǎn)生加速度時牛頓第二定律仍成立。
62、力與加速度的對應關系,無先后之分,力改變的同時加速度相應改變。
63、雖然由牛頓第二定律可以得出,當物體不受外力或所受合外力為零時,物體將做勻速直線運動或靜止,但不能說牛頓第一定律是牛頓第二定律的特例,因為牛頓第一定律所揭示的物體具有保持原來運動狀態(tài)的性質,即慣性,在牛頓第二定律中沒有體現(xiàn)。
64、牛頓第二定律在力學中的應用廣泛,但也不是"放之四海而皆準",也有局限性,對于微觀的高速運動的物體不適用,只適用于低速運動的宏觀物體。
65、用牛頓第二定律解決動力學的兩類基本問題,關鍵在于正確地求出加速度a,計算合外力時要進行正確的受力分析,不要漏力或添力。
66、用正交分解法列方程時注意合力與分力不能重復計算。
67、注意F合=ma是矢量式,在應用時,要選擇正方向,一般我們選擇合外力的方向即加速度的方向為正方向。
68、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是視重的變化,物體的實重沒有改變。
69、判斷超重、失重時不是看速度方向如何,而是看加速度方向向上還是向下。
70、有時加速度方向不在豎直方向上,但只要在豎直方向上有分量,物體也處于超、失重狀態(tài)。
71、兩個相關聯(lián)的物體,其中一個處于超(失)重狀態(tài),整體對支持面的壓力也會比重力大(小)。
72、國際單位制是單位制的一種,不要把單位制理解成國際單位制。
73、力的單位牛頓不是基本單位而是導出單位。
74、有些單位是常用單位而不是國際單位制單位,如:小時、斤等。
75、進行物理計算時常需要統(tǒng)一單位。
76、只要存在與速度方向不在同一直線上的合外力,物體就做曲線運動,與所受力是否為恒力無關。
77、做曲線運動的物體速度方向沿該點所在的軌跡的切線,而不是合外力沿軌跡的切線。請注意區(qū)別。
78、合運動是指物體相對地面的實際運動,不一定是人感覺到的運動。
79、兩個直線運動的合運動不一定是直線運動,兩個勻速直線運動的合運動一定是勻速直線運動。兩個勻變速直線運動的合運動不一定是勻變速直線運動。
80、運動的合成與分解實際上就是描述運動的物理量的合成與分解,如速度、位移、加速度的合成與分解。
81、運動的分解并不是把運動分開,物體先參與一個運動,然后再參與另一運動,而只是為了研究的方便,從兩個方向上分析物體的運動,分運動間具有等時性,不存在先后關系。
82、豎直上拋運動整體法分析時一定要注意方向問題,初速度方向向上,加速度方向向下,列方程時可以先假設一個正方向,再用正、負號表示各物理量的方向,尤其是位移的正、負,容易弄錯,要特別注意。
83、豎直上拋運動的加速度不變,故其v-t圖象的斜率不變,應為一條直線。
84、要注意題目描述中的隱蔽性,如"物體到達離拋出點5m處",不一定是由拋出點上升5m,有可能在下降階段到達該處,也有可能在拋出點下方5m處。
85、平拋運動公式中的時間t是從拋出點開始計時的,否則公式不成立。
86、求平拋運動物體某段時間內(nèi)的速度變化時要注意應該用矢量相減的方法。用平拋豎落儀研究平拋運動時結果是自由落體運動的小球與同時平拋的小球同時落地,說明平拋運動的豎直分運動是自由落體運動,但此實驗不能說明平拋運動的水平分運動是勻速直線運動。
87、并不是水平速度越大斜拋物體的射程就越遠,射程的大小由初速度和拋射角度兩因素共同決定。
88、斜拋運動最高點的物體速度不等于零,而等于其水平分速度。
89、斜拋運動軌跡具有對稱性,但彈道曲線不具有對稱性。
90、在半徑不確定的情況下,不能由角速度大小判斷線速度大小,也不能由線速度大小判斷角速度大小。
91、地球上的各點均繞地軸做勻速圓周運動,其周期及角速度均相等,各點做勻速圓周運動的半徑不同,故各點線速度大小不相等。
92、同一輪子上各質點的角速度關系:由于同一輪子上的各質點與轉軸的連線在相同的時間內(nèi)轉過的角度相同,因此各質點角速度相同。各質點具有相同的ω、T和n。
93、在齒輪傳動或皮帶傳動(皮帶不打滑,摩擦傳動中接觸面不打滑)裝置正常工作的情況下,皮帶上各點及輪邊緣各點的線速度大小相等。
94、勻速圓周運動的向心力就是物體的合外力,但變速圓周運動的向心力不一定是合外力。
95、當向心力有靜摩擦力提供時,靜摩擦力的大小和方向是由運動狀態(tài)決定的。
96、繩只能產(chǎn)生拉力,桿對球既可以產(chǎn)生拉力又可以產(chǎn)生壓力,所以求作用力時,應先利用臨界條件判斷桿對球施力的方向,或先假設力朝某一方向,然后根據(jù)所求結果進行判斷。
【高中物理知識點總結】相關文章:
高中物理知識點的總結08-02
高中物理知識點總結08-29
高中物理知識點的總結10-06
高中物理知識點的總結(合集)10-07
高中物理知識點的總結[推薦]10-08
高中物理知識點總結【推薦】11-15
高中物理力學知識點總結08-30
高中物理知識點的總結(優(yōu)選)10-11
(通用)高中物理知識點的總結10-07
高中物理期末知識點總結11-23