亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

《比例的意義》教案

時(shí)間:2023-01-05 08:09:30 意義 我要投稿
  • 相關(guān)推薦

《比例的意義》教案9篇

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,常常需要準(zhǔn)備教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。來參考自己需要的教案吧!以下是小編收集整理的《比例的意義》教案,希望對(duì)大家有所幫助。

《比例的意義》教案9篇

《比例的意義》教案1

  【學(xué)習(xí)目標(biāo)】

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會(huì)反比例函數(shù)的含義,理解反比例函數(shù)的概念。

  2、理解反比例函數(shù)的意義,根據(jù)題目條件會(huì)求對(duì)應(yīng)量的值,能用待定系數(shù)法求反比例函數(shù)關(guān)系。

  3、讓學(xué)生經(jīng)歷在實(shí)際問題中探索數(shù)量關(guān)系的過程,養(yǎng)成用數(shù)學(xué)思維方式解決實(shí)際問題的習(xí)慣,體會(huì)數(shù)學(xué)在解決實(shí)際問題中的作用。

  【學(xué)習(xí)重點(diǎn)】

  理解反比例函數(shù)的意義,確定反比例函數(shù)的解析式。

  【學(xué)習(xí)難點(diǎn)】

  反比例函數(shù)的解析式的確定。

  【學(xué)法指導(dǎo)】

  自主、合作、探究

  教學(xué)互動(dòng)設(shè)計(jì)

  【自主學(xué)習(xí),基礎(chǔ)過關(guān)】

  一、自主學(xué)習(xí):

  (一)復(fù)習(xí)鞏固

  1.在一個(gè)變化的過程中,如果有兩個(gè)變量x和y,當(dāng)x在其取值范圍內(nèi)任意取一個(gè)值時(shí),y,則稱x為,y叫x的.

  2.一次函數(shù)的解析式是:;當(dāng)時(shí),稱為正比例函數(shù).

  3.一條直線經(jīng)過點(diǎn)(2,3)、(4,7),求該直線的解析式.

  以上這種求函數(shù)解析式的方法叫:

  (二)自主探究

  提出問題:下列問題中,變量間的對(duì)應(yīng)關(guān)?可用怎樣的函數(shù)關(guān)系式表示?

 

  1.如圖K-3-8,已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

  (1)當(dāng)y1-y2=4時(shí),求m的'值;

  (2)過點(diǎn)B,C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若△PBD的面積是8,請(qǐng)寫出點(diǎn)P的坐標(biāo)(不需要寫解答過程).

  26.1.2反比例函數(shù)的圖象和性質(zhì):課文練習(xí)

  1.下面關(guān)于反比例函數(shù)y=-3x與y=3x的說法中,不正確的是(  )

  A.其中一個(gè)函數(shù)的圖象可由另一個(gè)函數(shù)的圖象沿x軸或y軸翻折“復(fù)印”得到[

  B.它們的圖象都是軸對(duì)稱圖形

  C.它們的圖象都是中心對(duì)稱圖形

  D.當(dāng)x>0時(shí),兩個(gè)函數(shù)的函數(shù)值都隨自變量的增大而增大

《比例的意義》教案2

  教學(xué)目標(biāo)

  知識(shí)目標(biāo):理解比例的意義。

  技能目標(biāo):能正確判斷兩個(gè)比是否能組成比例,培養(yǎng)學(xué)生抽象概括能力。

  情感目標(biāo):使學(xué)生初步感知事物間是相互聯(lián)系、變化發(fā)展的。

  教學(xué)重難點(diǎn)

  重點(diǎn):理解比例的意義。

  難點(diǎn):判斷兩個(gè)比能否組成比例。

  教學(xué)工具

  多媒體課件

  教學(xué)過程

  一、新課導(dǎo)入

  請(qǐng)同學(xué)們回憶一下比的知識(shí),比的前項(xiàng)、后項(xiàng)和比值。

  二、教學(xué)過程

  1.比例的意義

  (1)出示P40例1

  操場上和教室里兩面國旗的`長和寬的比值有什么關(guān)系?

  2.4∶1.6=3∶2

  60∶40=3∶2

  2.4∶1.6=60∶40

  象這樣表示兩個(gè)比相等的式子叫做比例。

  比例也可以寫成:=

  做一做

  1、下面那組中的兩個(gè)比可以組成比例?把組成的比例寫出來。

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) ∶和6∶4 (4)0.6∶0.2和∶

  答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

  (4)0.6∶0.2=3∶2 ∶ =3∶1

  所以,只有第一組可以組成比例為6∶10=9∶15

  2、用圖中4個(gè)數(shù)據(jù)可以組成多少比例?

  答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

  全課小結(jié)

  通過這節(jié)課,我們學(xué)到了什么知識(shí)?什么是比例?

  拓展延伸

  用8、12四個(gè)數(shù)分別作為比例的項(xiàng),你能組成幾個(gè)比例?

課后小結(jié)

  通過這節(jié)課,我們學(xué)到了什么知識(shí)?什么是比例?

  課后習(xí)題

  一、填空

  1、( )叫做比例。

  2、兩個(gè)比的( )相等,這兩個(gè)比就相等。

  3、把6×8=24×2改寫成四個(gè)比例。

  4、把7m=8n改寫成四個(gè)比例。

  5、根據(jù)8×9=3×24,寫出比例( )

  6、如果7a=6b,那么a:b=( ):( )。

  7、如果9a=5b,那么b:a=( ):( )。

  二、選擇

  1、下面的比中能與3∶8組成比例的是( )。

  A.3.5∶6 B.1.5∶4 C.6∶1.5

  2、甲數(shù)除乙數(shù)的商是1.8,那么甲數(shù)與乙數(shù)的比是( )。

  A.9:5 B.5:9 C.1:8

  3、下面的數(shù)中,能與6、9、10組成比例的是( )。

  A.7 B.5.4 C.1.5

  板書

  表示兩個(gè)比相等的式子叫做比例。

《比例的意義》教案3

  1、成正比例的量

  教學(xué)內(nèi)容:成正比例的量

  教學(xué)目標(biāo):

  1.使學(xué)生理解正比例的意義,會(huì)正確判斷成正比例的量。

  2.使學(xué)生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關(guān)簡單問題。

  教學(xué)重點(diǎn):正比例的意義。

  教學(xué)難點(diǎn):正確判斷兩個(gè)量是否成正比例的關(guān)系。

  教學(xué)過程:

  一揭示課題

  1.在現(xiàn)實(shí)生活中,我們常常遇到兩種相關(guān)聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的此導(dǎo)下,學(xué)生會(huì)舉出一些簡單的例子,如:

  (1)班級(jí)人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

 。2)送來的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。

 。3)上學(xué)時(shí),去的速度快了,時(shí)間用少了;速度慢了,時(shí)間用多了。

  (4)排隊(duì)時(shí),每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  2.這種變化的量有什么規(guī)律?存在什么關(guān)系呢?今天,我們首先來學(xué)習(xí)成正比例的量。板書:成正比例的量

  二探索新知

  1.教學(xué)例1

  (1)出示例題情境圖。

  問:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

 。2)出示表格。

  高度/㎝24681012

  體積/㎝350100150200250300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學(xué)生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。

  板書:

  教師:體積與高度的比值一定。

 。2)說明正比例的意義。

 、僭谶@一基礎(chǔ)上,教師明確說明正比例的意義。

  因?yàn)楸拥牡酌娣e一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應(yīng)增加,水的高度降低,體積也相應(yīng)減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 、趯W(xué)生讀一讀,說一說你是怎么理解正比例關(guān)系的。

  要求學(xué)生把握三個(gè)要素:

  第一,兩種相關(guān)聯(lián)的量;

  第二,其中一個(gè)量增加,另一個(gè)量也增加;一個(gè)量減少,另一個(gè)量也減少。

  第三,兩個(gè)量的比值一定。

 。3)用字母表示。

  如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的比值(一定),比例關(guān)系可以用正的`式子表示:

 。4)想一想:

  師:生活中還有哪些成正比例的量?

  學(xué)生舉例說明。如:

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。

  衣服的單價(jià)一不定期,購買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。

  地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。

  2.教學(xué)例2。

  (1)出示表格(見書)

 。2)依據(jù)下表中的數(shù)據(jù)描點(diǎn)。(見書)

 。3)從圖中你發(fā)現(xiàn)了什么?

  這些點(diǎn)都在同一條直線上。

 。4)看圖回答問題。

 、偃绻兴母叨仁7㎝,那么水的體積是多少?

  生:175㎝3。

 、隗w積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

 、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對(duì)應(yīng)的點(diǎn)是否在直線上?

  生:水的體積是350㎝3,相對(duì)應(yīng)的點(diǎn)一定在這條直線上。

 。5)你還能提出什么問題?有什么體會(huì)?

  通過交流使學(xué)生了解成正比例量的圖像特往。

  3.做一做。

  過程要求:

 。1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時(shí)間的比,說一說比值表示什么?

  比值表示每小時(shí)行駛多少千米。

 。2)表中的路程和時(shí)間成正比例嗎?為什么?

  成正比例。理由:

  ①路程隨著時(shí)間的變化而變化;

 、跁r(shí)間增加,路程也增加,時(shí)間減少,路程也隨著減少;

 、鄯N程和時(shí)間的比值(速度)一定。

 。3)在圖中描出表示路程和時(shí)間的點(diǎn),并連接起來。有什么發(fā)現(xiàn)?所描的點(diǎn)在一條直線上。

 。4)行駛120KM大約要用多少時(shí)間?

  (5)你還能提出什么問題?

  4.課堂小結(jié)

  說一說成正比例關(guān)系的量的變化特征。

  三鞏固練習(xí)

  完成課文練習(xí)七第1~5題。

  2、成反比例的量

  教學(xué)內(nèi)容:成反比例的量

  教學(xué)目標(biāo):

  1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。

  2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。

  教學(xué)重點(diǎn):反比例的意義。

  教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。

  教學(xué)過程:

  一導(dǎo)入新課

  1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。

  回答要點(diǎn):

 。1)兩種相關(guān)聯(lián)的量;

  (2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;

 。3)兩個(gè)量的比值一定。

  2.舉例說明。

  如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。

  理由:

 。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;

 。2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)

  減少,大米的總質(zhì)量也相應(yīng)減少;

 。3)總質(zhì)量與袋數(shù)的比值一定。

  所以,大米的袋數(shù)與總質(zhì)量成正比例。

  板書:

  3.揭示課題。

  今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?

  板書課題:成反比例的量[ 內(nèi) 容 結(jié) 束 ]

《比例的意義》教案4

  教學(xué)內(nèi)容

  教科書第52頁例1,第55頁課堂活動(dòng)第1題及練習(xí)十二1,2,3題。

  教學(xué)目標(biāo)

  1.使學(xué)生通過具體問題情境認(rèn)識(shí)成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系,能找到生活中成正比例的實(shí)例,并進(jìn)行交流。

  2.通過探索正比例意義的教學(xué)活動(dòng),使學(xué)生感受事物中充滿著運(yùn)動(dòng)、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  3.通過觀察、交流、歸納、推斷等教學(xué)活動(dòng),感受數(shù)學(xué)思維過程的合理性,培養(yǎng)學(xué)生的觀察能力、推理能力、歸納能力和靈活應(yīng)用知識(shí)的能力。

  教學(xué)重點(diǎn)

  認(rèn)識(shí)成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系。

  教學(xué)難點(diǎn)

  理解正比例的意義,感受事物中充滿著運(yùn)動(dòng)、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  教學(xué)準(zhǔn)備

  教具:多媒體課件。

  學(xué)具:作業(yè)本,數(shù)學(xué)書。

  教學(xué)過程

  一、聯(lián)系生活,復(fù)習(xí)引入

 。1)下面是居委會(huì)張阿姨負(fù)責(zé)的小區(qū)水費(fèi)收繳情況,用這個(gè)表中的數(shù)能寫成多少個(gè)有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

  (2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費(fèi)和用水量、總價(jià)和數(shù)量)在我們平時(shí)的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?

  教師:這些數(shù)量之間藏著不少的知識(shí),今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。

  二、自主探索,學(xué)習(xí)新知

  1.教學(xué)例1

  用課件在剛才準(zhǔn)備題的表格中增加幾列數(shù)據(jù),變成表。

  教師:請(qǐng)同學(xué)們觀察這張表,先獨(dú)立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。

  教師根據(jù)學(xué)生的回答將表格完善,并作必要的板書。

  教師:同學(xué)們發(fā)現(xiàn)表格中的水費(fèi)隨著用水量的增加也在不斷增加,像這樣水費(fèi)隨著用水量的變化而變化,我們就說水費(fèi)和用水量是相互關(guān)聯(lián)的。

  板書:相關(guān)聯(lián)

  教師:你們還發(fā)現(xiàn)哪些規(guī)律?

  學(xué)生在這里主要體會(huì)水費(fèi)除以用水量得到的每噸水單價(jià)始終是不變的,教師可根據(jù)學(xué)生的回答板書出來,便于其他學(xué)生觀察:

  教師:水費(fèi)除以用水量得到的單價(jià)相等也可以說是水費(fèi)與用水量的比值相等,也就是一個(gè)固定的數(shù)。

  板書:

  2.教學(xué)試一試

  教師:我們?cè)賮硌芯恳粋(gè)問題。

  課件出示第52頁下面的.試一試。

  學(xué)生先獨(dú)立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個(gè)表格中的數(shù)據(jù)嗎?

  教師根據(jù)學(xué)生的回答歸納如下:

  表中的路程和時(shí)間是相關(guān)聯(lián)的量,路程隨著時(shí)間的變化而變化。

  時(shí)間擴(kuò)大若干倍,路程也擴(kuò)大相同的倍數(shù);時(shí)間縮小若干倍,路程縮小相同的倍數(shù)。

  路程與時(shí)間的比值是一定的,速度是每時(shí)80 km,它們之間的關(guān)系可以寫成路程時(shí)間=速度(一定)

  3.教學(xué)議一議

  教師:我們研究了上面生活中的兩個(gè)問題,誰能發(fā)現(xiàn)它們之間的共同點(diǎn)呢?

  引導(dǎo)學(xué)生歸納出這兩個(gè)問題中都有相關(guān)聯(lián)的量,一種量擴(kuò)大或縮小若干倍,另一種量也隨著擴(kuò)大或縮小相同的倍數(shù),所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關(guān)系叫做成正比例關(guān)系。

  4.教學(xué)課堂活動(dòng)

  教師:請(qǐng)大家說一說生活中還有哪些是成正比例的量。

  三、夯實(shí)基礎(chǔ),鞏固提高

 。1)完成練習(xí)十二的第1題。

  教師:請(qǐng)同學(xué)們用所學(xué)知識(shí)判斷一下,下面表中的兩種量成正比例關(guān)系嗎?為什么?

  學(xué)生獨(dú)立思考,先小組內(nèi)交流再集體交流。

  (2)完成練習(xí)十二的第2題。

  四、全課小結(jié)

  教師:這節(jié)課你們學(xué)到了哪些知識(shí)?用了哪些學(xué)習(xí)方法?還有哪些不懂的問題?

《比例的意義》教案5

  教學(xué)內(nèi)容:

  補(bǔ)充有關(guān)比例意義、基本性質(zhì)和解比例的練習(xí)

  教學(xué)目標(biāo):

  1.進(jìn)一步理解和掌握比例的意義,能根據(jù)比例的意義判斷兩個(gè)比能否組成比例。

  2.進(jìn)一步理解和掌握比例的基本性質(zhì),能根據(jù)比例的基本性質(zhì)正確判斷兩個(gè)比能否組成比例,進(jìn)一步掌握解比例的方法。

  3.通過練習(xí),讓學(xué)生在思考、交流中培養(yǎng)分析、概括能力,體會(huì)數(shù)學(xué)知識(shí)之間的聯(lián)系,感受數(shù)學(xué)學(xué)習(xí)的樂趣。

  教學(xué)措施:

  幫助學(xué)生系統(tǒng)整理前幾節(jié)課學(xué)習(xí)的數(shù)學(xué)知識(shí);設(shè)計(jì)一些有針對(duì)性的練習(xí);練習(xí)過程中注重分析學(xué)生練習(xí)情況,加強(qiáng)課堂上對(duì)學(xué)習(xí)困難生的輔導(dǎo)。

  教學(xué)準(zhǔn)備:

  上傳補(bǔ)充練習(xí)

  教學(xué)過程:

  一、整理知識(shí)

  1.提問:前幾節(jié)課我們學(xué)習(xí)了比例的意義、基本性質(zhì)和解比例這三部分內(nèi)容。你有哪些收獲?請(qǐng)你和同桌交流一下。

  2.學(xué)生同桌之間進(jìn)行交流。

  3.指名學(xué)生交流,教師相機(jī)板書,將知識(shí)點(diǎn)進(jìn)行梳理和歸納。

  4.揭示課題:運(yùn)用比例的意義和比例的基本性質(zhì)可以解決一些數(shù)學(xué)問題。這節(jié)課我們繼續(xù)學(xué)習(xí)有關(guān)內(nèi)容。(板書課題)

  二、基本練習(xí)

  1.判斷。

 。1)比例是一個(gè)等式。

 。2)甲數(shù)和乙數(shù)的比值是2/3,如果甲、乙兩個(gè)數(shù)同時(shí)擴(kuò)大3.5倍,它們的比值還是2/3。

  (3)比例的兩個(gè)內(nèi)項(xiàng)減去兩個(gè)外項(xiàng)的積,差是0。

 。4)任意兩個(gè)正方形的周長與邊長的比都可以組成比例。

 。5)如果A╳9=B╳6(A、B均不為0),那么,A與B的比是3:2。

  組織學(xué)生思考、交流,鼓勵(lì)學(xué)生完整地說出自己的分析推理過程。

  2.根據(jù)下面的等式,寫出幾個(gè)不同的比例。

  3╳40=8╳15

  (1)現(xiàn)在已知的是一個(gè)等式,等式左、右兩邊的兩個(gè)數(shù)分別是寫出的比例中的什么?

 。2)你能有序地寫出所有的比例,既不重復(fù)也不遺漏嗎?(學(xué)生獨(dú)立完成) (3)學(xué)生交流思考過程,教師及時(shí)講評(píng):可以先把3和40作為比例的內(nèi)項(xiàng),寫出四個(gè)比例;然后再把8和15作為內(nèi)項(xiàng)寫出另外四個(gè)比例。

  3.判斷四個(gè)數(shù)10.5、5/4、20/21、8能否組成比例?

 。1)要判斷四個(gè)數(shù)能否組成比例有哪些方法?(根據(jù)比例的意義或比例基本性質(zhì))

  (2)你認(rèn)為這里選擇哪種方法比較方便?

 。3)指名學(xué)生交流后,學(xué)生寫出比例。

  小結(jié):如果給我們四個(gè)數(shù),要讓我們判斷能否組成比例,一般,我們可以運(yùn)用比例的基本性質(zhì)來判斷比較簡便;痉椒ㄊ窍葘⑦@四個(gè)數(shù)從大到小排列,然后用最大數(shù)乘最小數(shù),中間兩數(shù)相乘,看看乘積是否相等,最后根據(jù)比例基本性質(zhì)來寫出不同的比例。

  4.按要求組成比例。

 。1)從2、10、4.5、9、5五個(gè)數(shù)中選出四個(gè)組成一個(gè)比例。

 。2)從18的所有約數(shù)中選出四個(gè)組成一個(gè)比例。

 。3)把8和9作兩個(gè)外項(xiàng),比值是1/2的一個(gè)比例。

 。4)給5、8、0.4三個(gè)數(shù)分別配上一個(gè)不同的數(shù),組成兩個(gè)不同的比例.

  逐個(gè)出示題目,學(xué)生練習(xí)之前先要弄清題目要求。

  學(xué)生完成后進(jìn)行交流,要求說說自己的思考過程,教師及時(shí)評(píng)價(jià)。

  教師要及時(shí)關(guān)注學(xué)生存在的`問題及時(shí)輔導(dǎo)。

  5.根據(jù)比例的基本性質(zhì),在括號(hào)里填上合適的數(shù)。

  15:3=( ):1 2:0.5=12:( )

  0.3/4=( )/32 7/9:( )=1/2:3/5

 。 )/12=3/18 ( ):4.5=0.4:9

  先讓學(xué)生根據(jù)比例基本性質(zhì)來思考并求出括號(hào)中的數(shù),然后請(qǐng)學(xué)生交流思考過程。

  三、解比例

  25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56

  2、根據(jù)下面的條件列出比例,并且解比例

  a. 96和X的比等于16和5的比。

  b. 45 和X的比等于25和8的比。

  c. 兩個(gè)外項(xiàng)是24和18,兩個(gè)內(nèi)項(xiàng)是X和36 。

  四、全課總結(jié)

  通過本節(jié)課的學(xué)習(xí),你又有哪些收獲?你還有什么問題沒有弄明白嗎?

  四、布置作業(yè)

  補(bǔ)充相應(yīng)練習(xí)

《比例的意義》教案6

  教學(xué)要求:

  1.使學(xué)生認(rèn)識(shí)反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):

  認(rèn)識(shí)反比例關(guān)系的意義。

  教學(xué)難點(diǎn):

  掌握成反比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、鋪墊孕伏:

  1.正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?

  判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

  2.下面哪兩種量成正比例關(guān)系?為什么?

  (1)時(shí)間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價(jià)和總價(jià)。

  3.說一說工作效率、工作時(shí)間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時(shí)間之間會(huì)怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)

  二、自主探究:

  1.教學(xué)例1。

  出示例1某運(yùn)輸公司要運(yùn)一批300噸的貨物。讓學(xué)生計(jì)算并完成填表任務(wù)。

  每天運(yùn)的數(shù)量(噸) 10 20 30 40 50

  所需的天數(shù) 30 15 10 7.5

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學(xué)生口答 討論結(jié)果得出:

  (1)每天運(yùn)的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運(yùn)的噸數(shù)的變化而變化。

  (2)每天運(yùn)的噸數(shù)縮小,需要的天數(shù)反而擴(kuò)大,每天運(yùn)的噸數(shù)擴(kuò)大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運(yùn)的噸數(shù)和天數(shù)的'積總是一定的。(板書:每天運(yùn)的噸數(shù)和天數(shù)的積一定)因?yàn)槊刻爝\(yùn)的噸數(shù)和天數(shù)的積都是300。提問:這里的300是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個(gè)式子表示的是什么意思?(把上面的板書補(bǔ)充成:運(yùn)的總噸數(shù)一定時(shí),每天運(yùn)的噸數(shù)和天數(shù)的積一定)

  2.教學(xué)例2

  出示例2

  請(qǐng)同學(xué)們按照剛才學(xué)習(xí)例1的方法,自己學(xué)習(xí)例2,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,小組討論:長方形的面積不變,當(dāng)長發(fā)生變化時(shí),長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請(qǐng)你比較一下例1和例2,說一說,這兩個(gè)例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時(shí)兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個(gè)式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時(shí)就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。

  4.具體認(rèn)識(shí)。

  (1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,

  例2里的兩種量成反比例關(guān)系嗎?為什么?

  (2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

  (3) 判斷。

  現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時(shí)間=工作總量,當(dāng)工作總量一定時(shí),工作效率和工作時(shí)間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個(gè)量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時(shí)乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時(shí)乘積一定,那它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

《比例的意義》教案7

  教學(xué)目標(biāo):

  (1)通過計(jì)算、觀察、比較,讓學(xué)生概括、理解比例的意義和比例的基本性質(zhì)。

  (2)認(rèn)識(shí)比例的各部分名稱。

  (3)學(xué)會(huì)用比例的意義或比例的基本性質(zhì),判斷兩個(gè)比能不能組成比例,并寫出比例。

  教學(xué)重點(diǎn)難點(diǎn):

  理解比例的意義和基本性質(zhì),會(huì)用比例的意義和基本性質(zhì)判斷兩個(gè)比能不能組成比例,并寫出比例。

  教具學(xué)具準(zhǔn)備:

  幻燈片、學(xué)習(xí)卡。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,引入新課。

  出示三幅場景圖。

 。1)圖上描述的是什么情景?這幾幅圖都與什么有關(guān)?

 。2)這三面國旗有什么相同和不同的地方?(形狀相同,大小不同)

 。3)你們有見過這樣的國旗嗎?或者這樣的?

  我們的國旗,不論大小,之所以形狀相同,是因?yàn)樗鼈兌际前凑找欢ǖ谋壤齺碇谱鞯,從今天開始,我們將要學(xué)習(xí)有關(guān)比例的知識(shí)。板書課題

  二、自主探究,明確意義

  1、提問:你們知道每一幅圖中國旗的長和寬分別是多少嗎?

  2、談話:在制作國旗的過程中存在著有趣的比。請(qǐng)同學(xué)們拿出第一張自主學(xué)習(xí)卡,算一算這三幅國旗的長、寬之比,求出比值,并同桌互相說一說你有什么發(fā)現(xiàn)?

  3、學(xué)生匯報(bào)。

  4、我們以操場上和教室里的國旗為例,2.4:1.6= ,60:40= ,這兩個(gè)比的比值相等,中間可以用等號(hào)連接起來,寫成2.4:1.6=60:40,因?yàn)楸冗可以寫成分?jǐn)?shù)形式,所以還可以寫成=。

  像這樣表示兩個(gè)比相等的式子叫做比例。(板書)

  5、在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?

  6、深入探討:

 。1)比例有幾個(gè)比組成?

  (2)是不是任意兩個(gè)比都能組成比例?

 。3)判斷兩個(gè)比能不能組成比例,關(guān)鍵要看什么?

  7、完成“做一做”。

  三、探究比例的基本性質(zhì)。

  1、學(xué)習(xí)比例各部分的名稱。

  教師:我們知道組成比的兩個(gè)數(shù)分別叫前項(xiàng)和后項(xiàng),組成比例的四個(gè)數(shù)也有自己的名字,你們知道它們分別叫什么嗎?(課件出示)

 。1)指名讀一讀有關(guān)知識(shí)。

 。2)誰來介紹一下在2.4:1.6=60:40中,內(nèi)項(xiàng)和外項(xiàng)分別是誰?

  隨著學(xué)生的回答教師出示:

  2.4: 1.6 = 60: 40 (外項(xiàng))(內(nèi)項(xiàng))

  └-內(nèi)項(xiàng)-┘ =

  └------外項(xiàng)-------┘ (內(nèi)項(xiàng))(外項(xiàng))

 。3)如果把比例寫成分?jǐn)?shù)形式,你能找出它的內(nèi)項(xiàng)和外項(xiàng)嗎?

 。4)任意選擇一個(gè)比例式,標(biāo)出內(nèi)項(xiàng)、外項(xiàng),同桌兩人互相檢查。

  2、研究比例的基本性質(zhì)。

 。1)活動(dòng)探究,總結(jié)性質(zhì)。

  談話:比有基本性質(zhì),比例表示兩個(gè)比相等的式子,也有它特有的性質(zhì),請(qǐng)同學(xué)們拿出2號(hào)自主學(xué)習(xí)卡,小組討論一下,寫一寫,算一算,解決以下問題。

 、儆(jì)算下面比例中兩個(gè)外項(xiàng)的積和兩個(gè)內(nèi)項(xiàng)的積,比較一下,你能發(fā)現(xiàn)什么?

  2.4:1.6=60:40 =

 、谀隳芘e一個(gè)例子,驗(yàn)證你的發(fā)現(xiàn)嗎?

 、勰隳艿贸鍪裁唇Y(jié)論?

 、苣隳苡米帜副硎具@個(gè)性質(zhì)嗎?

  (2)運(yùn)用性質(zhì)。

 、偬釂枺簩W(xué)了比例的基本性質(zhì),你覺得運(yùn)用它能解決什么問題?

 、谶\(yùn)用比例的基本性質(zhì),判斷下面哪組中的兩個(gè)比可以組成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、鞏固練習(xí)。

  1、填空

 。1)在a:7=9:b中,( )是內(nèi)項(xiàng),( )是外項(xiàng),a×b=( )。

 。2)一個(gè)比例的兩個(gè)內(nèi)項(xiàng)分別是3和8,則兩個(gè)外項(xiàng)的積是( ),兩個(gè)外項(xiàng)可能是( )和( )。

 。3)在一個(gè)比例里,兩個(gè)外項(xiàng)互為倒數(shù),那么兩個(gè)內(nèi)項(xiàng)的積是( ),如果一個(gè)外項(xiàng)是 ,另一個(gè)外項(xiàng)是( )。

 。4)在比例里,兩個(gè)內(nèi)項(xiàng)的積是18,其中一個(gè)外項(xiàng)是2,另一個(gè)外項(xiàng)是( )。

 。5)如果5a=3b,那么, = , = 。

  2、判斷。

 。1)在比例中,兩個(gè)外項(xiàng)的積減去兩個(gè)內(nèi)項(xiàng)的積,差是0。( )

 。2)18:30和3:5可以組成比例。( )

 。3)如果4X=3Y,(X和Y均不為0),那么4:X=3:Y。( )

  (4)因?yàn)?×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改寫成比例:(能寫幾個(gè)寫幾個(gè))

  16 × 3 = 4 × 12

  四、總結(jié)歸納

  1、這節(jié)課我們學(xué)習(xí)了什么知識(shí)?你有什么收獲?

  2、判斷兩個(gè)比能不能組成比例,有幾種方法?

  比例在生活中有著廣泛的應(yīng)用,比如:警察可以根據(jù)腳印的長短判斷罪犯的大致身高,根據(jù)影子的長度可以算出一棵大樹的高度等,都與比例有關(guān),我們只要認(rèn)真學(xué)好比例,就一定能幫助我們了解其中的奧秘。

  板書設(shè)計(jì)

  比例的意義和基本性質(zhì)

  表示兩個(gè)比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外項(xiàng))(內(nèi)項(xiàng))

  └-內(nèi)項(xiàng)-┘ 或 =

  └------外項(xiàng)-------┘ (外項(xiàng))(內(nèi)項(xiàng))

  在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。

  A:B=C → AD=BC

  《比例的意義》教案15

  教學(xué)內(nèi)容:教科書第19—21頁正比例的意義,練習(xí)六的1—3題。

  教學(xué)目的:

  1.使學(xué)生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  2.初步培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題。

  3.初步滲透函數(shù)思想。

  教具準(zhǔn)備:投影儀、投影片、小黑板。

  教學(xué)過程():

  一、復(fù)習(xí)

  用,投影片逐一出示下面的題目,讓學(xué)生回答。

  1.已知路程和時(shí)間,怎樣求速度?板書: =速度

  2.已知總價(jià)和數(shù)量,怎樣求單價(jià)?板書: =單價(jià)

  3.己知工作總量和工作時(shí)間,怎樣求工作效率?板書:

 。焦ぷ餍

  4,已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書: =公頃產(chǎn)量

  二、導(dǎo)人新課

  教師:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系中的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。(板書課題:正比例的意義)

  三、新課

  1.教學(xué)例1。

  用小黑板出示例1:一列火車行駛的時(shí)間和所行的路程如下表:

  提問:

  “誰來講講例1的意思?”(火車1小時(shí)行駛60千米,2小時(shí)行駛120千米……)

  “表中有哪幾種量?”

  “當(dāng)時(shí)間是1小時(shí),路程是多少?當(dāng)時(shí)間是2小時(shí),路程又是多少?……”

  “這說明時(shí)間這種量變化了,路程這種量怎么樣了?”(也變化了。)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)“時(shí)間和路程是兩種相關(guān)聯(lián)的量,路程是怎樣隨著時(shí)間變化而變化的呢?”

  教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時(shí)間擴(kuò)大2倍,對(duì)應(yīng)的路程也擴(kuò)大2倍3時(shí)間擴(kuò)大3倍,對(duì)應(yīng)的路程也擴(kuò)大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時(shí)間縮小8倍,對(duì)應(yīng)的路程也縮小8倍;時(shí)間縮小7倍,對(duì)應(yīng)的路程也縮小7倍……時(shí)間縮小2倍,對(duì)應(yīng)的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時(shí)間的變化而變化的。時(shí)間擴(kuò)大路程也擴(kuò)大,時(shí)間縮小路程也縮小。它們擴(kuò)大、縮小的規(guī)律是怎么樣的呢?

  讓每一小組(8個(gè)小組)的同學(xué)選一組相對(duì)應(yīng)的數(shù)據(jù),計(jì)算出它們的比值。教師板書出來: =60. =60, =60…… 讓學(xué)生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。

  然后教師指著 =60, =60 = 60……問:“比值60,實(shí)際上是火車的什么:你能將這些式子所表示的.意義寫成一個(gè)關(guān)系式嗎?板書: =速度(—定)

  教師小結(jié):通過剛才的觀察和分析.我們知道路程和時(shí)間是兩種什么樣的量?(兩種相關(guān)聯(lián)的量。)路程和時(shí)間這兩種量的變化規(guī)律是什么呢?(路程和時(shí)間的比的比值(速度)總是一定的。)

  2.教學(xué)例2。

  出示例2:在一間布店的柜臺(tái)上,有一張寫著某種花布的米數(shù)和總價(jià)的表。

  讓學(xué)生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數(shù)擴(kuò)大,總價(jià)怎樣?米數(shù)縮小,總價(jià)怎樣?

  (3)相對(duì)應(yīng)的總價(jià)和米數(shù)的比各是多少?比值是多少?

  當(dāng)學(xué)生回答完第二個(gè)問題后,教師板書: =3.1, =3.1, =3.1……

  然后進(jìn)一步問:

  “這個(gè)比值實(shí)際上是什么?你能用一個(gè)關(guān)系式表.示它們的關(guān)系嗎?”板書: =單價(jià)(一定)

  教師小結(jié):通過剛才的思考和分析,我們知道總價(jià)和米數(shù)也是兩種相關(guān)聯(lián)的量,總價(jià)是隨著米數(shù)的變化而變化的,米數(shù)擴(kuò)大,總價(jià)也隨著擴(kuò)大;米數(shù)縮小,總價(jià)也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:總價(jià)和米數(shù)的比的比值總是一定的。

  3.抽象概括正比例的意義。

  教師:請(qǐng)同學(xué)們比較一下剛才這兩個(gè)例題,回答下面的問題;

  (1)都有幾種量?

  (2)這兩種量有沒有關(guān)系?

  (3)這兩種量的比值都是怎樣的?

  教師小結(jié):通過比較,我們看出上面兩個(gè)例題,有一些共同特點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。(板書出教科書上第’20頁的倒數(shù)第二段。)

  接著指著例1的表格說明:在例1中,路程隨著時(shí)間的變化而變化,它們的比值(速度)保持一定,所以路程和時(shí)間是成正比例的量。隨后讓學(xué)生想一想:在例2中,有哪兩種相關(guān)聯(lián)的量:它們是不是成正比例的量?為什么?

  最后教師提出:如果我們用字母X,y表示兩種相關(guān)聯(lián)的量.用字母K表示它們的比值,你能將正比例關(guān)系用字母表示出來嗎?

  學(xué)生回答后,教師板書: =K(一定)

  4,教學(xué)例3。

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  教師引導(dǎo):

  “面粉的總重量和袋數(shù)是不是相關(guān)聯(lián)的量?”·

  “面粉的總重量和袋數(shù)有什么關(guān)系?它們的比的比值是什么?這個(gè)比值是否—定?”(板書: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例!

  5.鞏固練習(xí)。

  讓學(xué)生試做第21頁“做一做”中的題目。其中(3)要求學(xué)生說明這個(gè)比值所表示的意義,學(xué)生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。

  四、課堂練習(xí)

  完成練習(xí)六的第1—3題。

  第1題,做題前,讓學(xué)生想一想:成正比例的量要滿足哪幾個(gè)條件?然后讓學(xué)生算出各表中兩種相對(duì)應(yīng)的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關(guān)系式進(jìn)行判斷。第(3)小題,要問一問學(xué)生為什么正方形的邊長和面積不成比例。(因?yàn)橄鄬?duì)應(yīng)的正方形的邊長和面積的比的比值不相等。)

  第2題,先讓學(xué)生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3題,可先讓同桌的同學(xué)互相舉例,然后再指名舉出成正比例的例子。

《比例的意義》教案8

  教學(xué)內(nèi)容:

  比例的意義和基本性質(zhì)。

  教學(xué)要求:

  使學(xué)生理解比例的意義,會(huì)用比例的意義正確地判斷兩個(gè)比是否 成比例,使學(xué)生理解比例的基本性質(zhì)。

  教學(xué)重點(diǎn):

  理解比例的意義和基本性質(zhì)。

  教學(xué)難點(diǎn):

  靈活地判斷兩個(gè)比是否組成比例。

  教 具:

  投影機(jī)等。

  教學(xué)過程:

  一、復(fù)習(xí)。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示課題,引入新課。

  1、引入:如果有兩個(gè)比是相等的,那么這兩個(gè)相等的'比以叫做什么?它有什么樣的性質(zhì)?這節(jié)課我們就一起來研究它。

  2、引入新課。

  三、導(dǎo)演達(dá)標(biāo)。

  1、教學(xué)比例的意義。

  (1)引導(dǎo)學(xué)生觀察課本的表格后回答:

  A、第一次所行駛的路程和時(shí)間的比是什么?

  B、第二次所行駛的路程和時(shí)間的比是什么?

  C、這兩次比的比值各是什么?它們有什么關(guān)系?

  板書: 80:2=200:5 或 =

 。2)引出比例的意義。

  A、表示兩個(gè)比相等的式子叫做比例。

  B、討論:組成比例必須具備什么條件?如何判斷兩個(gè)比是不是組成比例的?比和比例有什么區(qū)別?

  C、判斷兩個(gè)比能不能組成比例,關(guān)鍵是看兩個(gè)比的比值是否相等。

  D、做一做。(先練習(xí),后講評(píng))

  2、教學(xué)比例的基本性質(zhì)。

 。1)看書后回答:

  A、什么叫做比例的項(xiàng)?

  B、什么叫做比例的外項(xiàng)、內(nèi)項(xiàng)?

 。2)引導(dǎo)學(xué)生總結(jié)規(guī)律?

  先讓學(xué)生計(jì)算,兩個(gè)外項(xiàng)的積,再計(jì)算兩個(gè)內(nèi)項(xiàng)的積,最后讓學(xué)生總結(jié)出比例的基本性質(zhì),然后強(qiáng)調(diào),如果把比例寫成分?jǐn)?shù)形式,比例的基本性質(zhì)就是等號(hào)兩端的分子和分母分別交叉相乘的積相等。

  3、練習(xí):判斷下面的哪組比可以組成比例。

  6:9和9:12 1.4:2和7:10

  四、鞏固練習(xí):

  第一、二題。(指名回答,集體訂正)

  五、總結(jié):

  今天我們學(xué)習(xí)了什么?

  比例的意義和比例的基本性質(zhì)及怎樣判斷兩個(gè)比是否可以組成比例的方法。

  六、作業(yè):

  第二題。

《比例的意義》教案9

  學(xué)情分析

  在此之前,他們學(xué)習(xí)了正比例的意義,對(duì)“相關(guān)聯(lián)的量”、“成正比例的兩個(gè)量的變化規(guī)律”、“如何判斷兩個(gè)量是否成正比例”已經(jīng)有了認(rèn)識(shí),這為學(xué)習(xí)《反比例的意義》奠定了基礎(chǔ)。

  教學(xué)目標(biāo)

  1.使學(xué)生認(rèn)識(shí)反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)判斷兩種量成不成反比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):

  認(rèn)識(shí)反比例關(guān)系的意義。

  教學(xué)難點(diǎn) :

  掌握成反比例量的變化規(guī)律及其特征。

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  1.正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?

  判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

  2.下面哪兩種量成正比例關(guān)系?為什么?

  (1)時(shí)間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價(jià)和總價(jià)。

  3.說一說工作效率、工作時(shí)間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時(shí)間之間會(huì)怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)

  二、教學(xué)新課

  1.教學(xué)例4。

  出示例4。讓學(xué)生計(jì)算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?點(diǎn)名讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么?

  點(diǎn)名學(xué)生口答討論的結(jié)果,得出:

  (1)每天運(yùn)的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運(yùn)的噸數(shù)的變化而變化。

  (2)每天運(yùn)的噸數(shù)縮小,需要的天數(shù)反而擴(kuò)大,每天運(yùn)的噸數(shù)擴(kuò)大,需要的天數(shù)反而縮小。

  (3)可以看出它們的'變化規(guī)律是:每天運(yùn)的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運(yùn)的噸數(shù)和天數(shù)的積一定)因?yàn)槊刻爝\(yùn)的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個(gè)式子表示的是什么意思?(板書補(bǔ)充:運(yùn)的總噸數(shù)一定時(shí),每天運(yùn)的噸數(shù)和天數(shù)的積一定)

  2.教學(xué)例5。

  出示例5。

  按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例5,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,指名學(xué)生口答從表里發(fā)現(xiàn)了些什么?再提問:這兩種相關(guān)聯(lián)量變化的規(guī)律是什么?

  (板書:每袋重量和袋數(shù)的積一定)

  乘積8000是什么數(shù)量,這種數(shù)量關(guān)系用式子怎樣表示?

  [板書:每袋重量×袋數(shù)=糖果總重量(積一定)]這個(gè)式子表示什么意思?(把上面板書補(bǔ)充成:糖果總重量一定時(shí),每袋重量和袋數(shù)的積一定)

  3.概括。

  (1)綜合例4、例5的共同點(diǎn)。

  提問:請(qǐng)你比較一下例4和例5,說一說,這兩個(gè)例題有什么共同的地方?

  (2)概括反比例意義。

  例4、例5里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?

  像例4、例5里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時(shí)兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。

  問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?

  (乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個(gè)式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時(shí)就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用x×y=k(一定)來表示。

  4.具體認(rèn)識(shí)。

  (1)提問:例4里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,

  例5里的兩種量成反比例關(guān)系嗎?為什么?

  (2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

  (3)做練習(xí)八第4題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。[結(jié)合板書;每天裝配的臺(tái)數(shù)×天數(shù)=一批計(jì)算機(jī)的總臺(tái)數(shù)(一定)]

  (4)判斷。

  現(xiàn)在回過來看開始寫的關(guān)系式:工作效率×工作時(shí)間=工作總量,當(dāng)工作總量一定時(shí),工作效率和工作時(shí)間成什么關(guān)系?為什么?指出:根據(jù)上面所說的,要知道兩個(gè)量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時(shí)乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時(shí)乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

  三、鞏固練習(xí)

  1. 做“練一練”第l,2,3,4,5題。

  指名口答,說說理由。思考時(shí)可以引導(dǎo)看數(shù)量關(guān)系式,說明理由。

  2.拓展應(yīng)用。

  3.綜合練習(xí)

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?

  五、課堂作業(yè)

【《比例的意義》教案】相關(guān)文章:

《比例的意義》教學(xué)實(shí)錄_《比例的意義》優(yōu)秀教案比例的意義優(yōu)質(zhì)教案12-06

《比例的意義》教案09-30

《比例的意義》教案12-02

推薦《比例的意義》教案06-01

【精】《比例的意義》教案12-22

《比例的意義》教案【薦】12-09

【推薦】《比例的意義》教案12-09

【熱】《比例的意義》教案12-22

《比例的意義》教案【熱門】12-24

【熱門】《比例的意義》教案12-23