- 相關(guān)推薦
二次根式數(shù)學(xué)教案
作為一名為他人授業(yè)解惑的教育工作者,時常會需要準(zhǔn)備好教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案應(yīng)該怎么寫呢?以下是小編精心整理的二次根式數(shù)學(xué)教案,希望能夠幫助到大家。
二次根式數(shù)學(xué)教案1
教學(xué)設(shè)計思想
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的`意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
教學(xué)目標(biāo)
知識與技能
1.知道什么是二次根式,并會用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
過程與方法
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
情感態(tài)度價值觀
1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點和難點
重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點:確定二次根式中字母的取值范圍。
教學(xué)方法
啟發(fā)式、講練結(jié)合
教學(xué)媒體
多媒體
課時安排
1課時
二次根式數(shù)學(xué)教案2
教案
教法:
1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學(xué)生的素質(zhì)。
知識點
上節(jié)課我們認(rèn)識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí)。
二、展示目標(biāo),自主學(xué)習(xí):
自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):
1、請比較與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進行計算的。
4、完成4頁“探究”中的填空,你得到的'結(jié)論是:____________________。
5 、看懂例3,有困難可與同伴交流或問老師。
課時作業(yè)
教師節(jié)要到了,為了表示對老師的敬意,小明做了兩張大小不同的正方形壁畫準(zhǔn)備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會更漂亮,他現(xiàn)在有1.2 m長的金彩帶,請你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長的金彩帶?(≈1.414,結(jié)果保留整數(shù))
二次根式數(shù)學(xué)教案3
教學(xué)目的
1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學(xué)重點
最簡二次根式的定義。
教學(xué)難點
一個二次根式化成最簡二次根式的方法。
教學(xué)過程
一、復(fù)習(xí)引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的.性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習(xí)
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
二次根式數(shù)學(xué)教案4
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會運用二次根式的性質(zhì)進行二次根式的化簡;
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
。2)學(xué)生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;
。3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的.化簡和解決一些綜合性較強的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.
四、教學(xué)過程設(shè)計
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計算
(1) ;(2) .
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計算
。1) ;(2) .
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運用
。1)算一算:
【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?
【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對 與 的認(rèn)識.
【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
。2)運用二次根式性質(zhì)進行化簡需要注意什么?
。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
五、目標(biāo)檢測設(shè)計
1. ; ; .
【設(shè)計意圖】考查對二次根式性質(zhì)的理解.
2.下列運算正確的是( )
A. B. C. D.
【設(shè)計意圖】考查學(xué)生運用二次根式的性質(zhì)進行化簡的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計意圖】考查學(xué)生對一個數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計算: .
【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.
二次根式數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.
4.通過學(xué)習(xí)分母有理化與除法的.關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點、難點解決辦法
1.教學(xué)重點:分母有理化.
2.教學(xué)難點:分母有理化的技巧.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
。1) (先乘除,后加減).
(2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
二次根式數(shù)學(xué)教案6
教學(xué)目標(biāo)
1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;
2.熟練地進行二次根式的加、減、乘、除混合運算.
教學(xué)重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.
教學(xué)過程設(shè)計
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,
計算結(jié)果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x-2且x0.
解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因為1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的`結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
二次根式數(shù)學(xué)教案7
課題:二次根式
教學(xué)目標(biāo) 1、知識與技能
理解a(a≥0)是一個非負(fù)數(shù), (a≥0)
2、過程與方法
。1)數(shù)學(xué)思考:學(xué)會獨立思考、體會數(shù)學(xué)的體驗歸納、類比的思想
方法
。2) 問題解決:能夠利用性質(zhì)進行二次根式的化簡計算,能夠互助
交流合作,分析問題,總結(jié)反思
3、情感、態(tài)度與價值觀
體驗成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴(yán)謹(jǐn)
求實的科學(xué)態(tài)度
教學(xué)重難點 教學(xué)重點:二次根式的概念
教學(xué)難點:二次根式中根號下必須為非負(fù)數(shù)
教學(xué)過程
一、課前回顧
(2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。 什么是二次根式?
二次根式中字母的取值范圍:
①被開方數(shù)大于等于零;
、诜帜钢杏凶帜笗r,要保證分母不為零。
、鄱鄠條件組合時,應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的.實例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長。
二、探究1(10分鐘)
練習(xí)1:
計算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題 例1:計算:
例2:計算:
達標(biāo)測試(5分鐘)
課堂測試,檢驗學(xué)習(xí)結(jié)果
1、判斷題
2、若 ,則x的取值范圍為 ( A )
。ˋ) x≤1 (B) x≥1
。–) 0≤x≤1 (D)一切有理數(shù)
3、計算
4、化簡
5、已知a,b,c為△ABC的三邊長,化簡:
這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這個知識點上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細研究 如圖,P是直角坐標(biāo)系中一點。
。1)用二次根式表示點P到原點O的距離;
。2)如果 求點P到原點O的距離
體驗收獲 今天我們學(xué)習(xí)了哪些知識
二次根式的兩條性質(zhì)。
布置作業(yè) 教材8頁習(xí)題第3、4題。
二次根式數(shù)學(xué)教案8
教學(xué)內(nèi)容
二次根式的加減
教學(xué)目標(biāo)
知識與技能目標(biāo):理解和掌握二次根式加減的方法.
過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡.
情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
重難點關(guān)鍵
1.重點:二次根式化簡為最簡根式.
2.難點關(guān)鍵:會判定是否是最簡二次根式.
教法:
1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計的`問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項進行類比,獲得解決問題的方法后配以精講,并進行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學(xué)生的素質(zhì)。
知識點
自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題與13頁“練習(xí)1”;
2、學(xué)生演板13頁“練習(xí)2、3”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式的加減法則是什么?有哪些運算步驟?
(2)怎樣合并被開方數(shù)相同的二次根式呢?
(3)二次根式進行加減運算時應(yīng)注意什么問題?
2、說不足:。
五、作業(yè)訓(xùn)練、鞏固提高
1、必做題:課本15頁的“習(xí)題2、3”;
課時練習(xí)
1.揭示學(xué)法、自主學(xué)習(xí)
認(rèn)真閱讀課本14頁內(nèi)容,完成下列任務(wù):
1、完成14頁“例3、4”,先做再對照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的運算依據(jù)是什么?應(yīng)注意什么問題?
(時間7分鐘若有困難,與同伴討論)
三、自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題;
2、學(xué)生演板14頁“練習(xí)1、2”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式進行混合運算時運用了哪些知識?
(2)二次根式進行混合運算時應(yīng)注意哪些問題?
二次根式數(shù)學(xué)教案9
一、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
。3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).
。ǘ┒胃降暮唵涡再|(zhì)
上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個簡單性質(zhì)
我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個非負(fù)數(shù)a的算術(shù)平方根。將符號看作開平方求算術(shù)平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:
這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個代數(shù)式嗎?
請分析:引導(dǎo)學(xué)生答如時才成立。
時才成立,即a取任意實數(shù)時都成立。
我們知道
如果我們把,同學(xué)們想一想是否就可以把任何一個非負(fù)數(shù)寫成一個數(shù)的平方形式了.
例1計算:
分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學(xué)習(xí)的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫成,而不宜寫成。
例2把下列非負(fù)數(shù)寫成一個數(shù)的平方的形式:
。1)5;(2)11;(3)1。6;(4)0。35.
例3把下列各式寫成平方差的形式,再分解因式:
。1)4x2—1;(2)a4—9;
(3)3a2—10;(4)a4—6a2+9.
解:(1)4x2—1
=(2x)2—12
=(2x+1)(2x—1).
。2)a4—9
=(a2)2—32
=(a2+3)(a2—3)
。3)3a2—10
(4)a4—6a2+32
=(a2)2—6a2+32
=(a2—3)2
(三)小結(jié)
1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.
2.關(guān)于公式的應(yīng)用。
。1)經(jīng)常用于乘法的`運算中.
。2)可以把任何一個非負(fù)數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.
。ㄋ模┚毩(xí)和作業(yè)
練習(xí):
1.填空
注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.
2.實數(shù)a、b在數(shù)軸上對應(yīng)點的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.
3.計算
二、作業(yè)
教材P.172習(xí)題11.1;A組2、3;B組2.
補充作業(yè):
下列各式中的字母滿足什么條件時,才能使該式成為二次根式?
分析:要使這些式成為二次根式,只要被開方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:
。1)由—|a—2b|≥0,得a—2b≤0,
但根據(jù)絕對值的性質(zhì),有|a—2b|≥0,
∴|a—2b|=0,即a—2b=0,得a=2b.
(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0
∴(m2+1)(m—n)≤0,又m2+1>0,
∴ m—n≤0,即m≤n.
說明:本題求解較難些,但基本方法仍是由二次根式中被開方數(shù)(式)大于或等于零列出不等式.通過本題培養(yǎng)學(xué)生對于較復(fù)雜的題的分析問題和解決問題的能力,并且進一步鞏固二次根式的概念.
三、板書設(shè)計
【二次根式數(shù)學(xué)教案】相關(guān)文章:
二次根式教案11-10
二次根式教案6篇02-21
二次根式教案三篇04-12
二次根式教案(15篇)02-16
二次根式教案15篇02-15
實用的二次根式教案三篇10-24
二次根式教案范文9篇10-29
二次根式教案匯編九篇02-03
實用的二次根式教案4篇04-03