亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

二次根式教案

時間:2023-02-16 10:19:24 教案大全 我要投稿

二次根式教案(15篇)

  作為一位優(yōu)秀的人民教師,時常需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的二次根式教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次根式教案(15篇)

二次根式教案1

  教學設(shè)計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應(yīng)用意識。

  教學目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過程與方法

  通過二次根式的`概念和性質(zhì)的學習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;

  2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  教學重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學方法

  啟發(fā)式、講練結(jié)合

  教學媒體

  多媒體

  課時安排

  1課時

二次根式教案2

  教案

  教法:

  1、引導發(fā)現(xiàn)法:通過教師精心設(shè)計的問題鏈,使學生產(chǎn)生認知沖突,感悟新知,建立分式的模型,引導學生觀察、類比、參與問題討論,使感性認識上升為理性認識,充分體現(xiàn)了教師主導和學生主體的作用,對實現(xiàn)教學目標起了重要的作用;

  2、講練結(jié)合法:在例題教學中,引導學生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養(yǎng)學生的閱讀習慣和規(guī)范的解題格式。

  學法:

  1、類比的`方法通過觀察、類比,使學生感悟二次根式的模型,形成有效的學習策略。

  2、閱讀的方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學習活動中的交流與合作。

  4、練習法采用不同的練習法,鞏固所學的知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學生的素質(zhì)。

  知識點

  上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學習。

  二、展示目標,自主學習:

  自學指導:認真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):

  1、請比較與0的大小,你得到的結(jié)論是:________________________。

  2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。

  3、看例2是怎樣利用性質(zhì)進行計算的。

  4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。

  5 、看懂例3,有困難可與同伴交流或問老師。

  課時作業(yè)

  教師節(jié)要到了,為了表示對老師的敬意,小明做了兩張大小不同的正方形壁畫準備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會更漂亮,他現(xiàn)在有1.2 m長的金彩帶,請你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長的金彩帶?(≈1.414,結(jié)果保留整數(shù))

二次根式教案3

  一、教學目標

  1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

  二、教學重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

  四、教學手段

  利用投影儀。

  五、教學過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的'性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應(yīng)該注意的問題。

  注意:

  ①化簡時,一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋斠粋式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

 。ㄈ┬〗Y(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11。4;A組1;B組1。

  七、板書設(shè)計

二次根式教案4

  教學目標

  1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

  教學過程設(shè)計

  一、復習

  1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的'運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案5

  1.教學目標

 。1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進行簡單的二次根式的乘法運算;

 。2)會用公式化簡二次根式。

  2.目標解析

 。1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;

  (2)學生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式。

  教學問題診斷分析

  本節(jié)課的學習中,學生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難。運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣。,培養(yǎng)學生良好的運算習慣。

  在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:

  (1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);

 。2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  本節(jié)課的教學難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡。

  教學過程設(shè)計

  1、復習引入,探究新知

  我們前面已經(jīng)學習了二次根式的概念和性質(zhì),本節(jié)課開始我們要學習二次根式的乘除。本節(jié)課先學習二次根式的乘法。

  問題1什么叫二次根式?二次根式有哪些性質(zhì)?

  師生活動學生回答。

  【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì)。

  問題2教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

  師生活動學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內(nèi)容。

  【設(shè)計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則。要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識。

  2、觀察比較,理解法則

  問題3簡單的根式運算。

  師生活動學生動手操作,教師檢驗。

  問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?

  師生活動學生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

  【設(shè)計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況。乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力。

  3、例題示范,學會應(yīng)用

  例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。

  師生活動提問:你是怎么理解例(1)的?

  如果學生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

  師生合作回答上述問題。對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外。

  再提問:你能仿照第(1)題的.解答,能自己解決(2)嗎?

  【設(shè)計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向。積的算術(shù)平方根的性質(zhì)可以進行二次根式的化簡。

  例2計算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除

  師生活動學生計算,教師檢驗。

 。1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

 。2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的。對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

 。3)例(3)的運算是選學內(nèi)容。讓學有余力的學生學到“根號下為字母的二次根式”的運算。本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外。

  【設(shè)計意圖】引導學生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算。讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用。

  教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號?梢愿鶕(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題。

  4、鞏固概念,學以致用

  練習:教科書第7頁練習第1題。第10頁習題16.2第1題。

  【設(shè)計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況。

  5、歸納小結(jié),反思提高

  師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:

 。1)你能說明二次根式的乘法法則是如何得出的嗎?

 。2)你能說明乘法法則逆用的意義嗎?

  (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

  6、布置作業(yè):教科書第7頁第2、3題。習題16.2第1,6題。

  五、目標檢測設(shè)計

  1、下列各式中,一定能成立的是( )

  A.二次根式的乘除B.二次根式的乘除

  C.二次根式的乘除D.二次根式的乘除

  【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎(chǔ)。

  2、化簡二次根式的乘除______________________________。

  【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式。

  3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()

  A.二次根式的乘除B.二次根式的乘除C.二次根式的乘除D.二次根式的乘除

  【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式。

二次根式教案6

  一、教學目標

  1、使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2、使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3、使學生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

  二、教學重點和難點

  1、重點:能夠把所給的二次根式,化成最簡二次根式。

  2、難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

  四、教學手段

  利用投影儀。

  五、教學過程

  (一)引入新課

  提出問題:如果一個正方形的面積是0.5m2,那么它的邊長是多少?能不能求出它的`近似值?

  了。這樣會給解決實際問題帶來方便。

  (二)新課

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1、被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

  例2把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3把下列各式化簡成最簡二次根式:

  說明:

  1、引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2、要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

  ②當一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

  (三)小結(jié)

  1、滿足什么條件的根式是最簡二次根式。

  2、把一個二次根式化成最簡二次根式的主要方法。

  (四)練習

  1、指出下列各式中的最簡二次根式:

  2、把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P.187習題11.4;A組1;B組1.

  七、板書設(shè)計

  略

二次根式教案7

  【 學習目標 】

  1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進一步體會分類討論的數(shù)學思想。

  3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

  【 學習重難點 】

  1、重點:準確理解二次根式的概念,并能進行簡單的計算。

  2、難點:準確理解二次根式的雙重非負性。

  【 學習內(nèi)容 】課本第2— 3頁

  【 學習流程 】

  一、 課前準備(預習學案見附件1)

  學生在家中認真閱讀理解課本中相關(guān)內(nèi)容的'知識,并根據(jù)自己的理解完成預習學案。

  二、 課堂教學

  (一)合作學習階段。

  教師出示課堂教學目標及引導材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

  2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

  3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

  (三)當堂檢測階段

  為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

  (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

  四、板書設(shè)計

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

二次根式教案8

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎(chǔ)差、自學能力差,因此要提供賞識性評價教學策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的設(shè)計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

  教學目標知識與技能目標:

  會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

  過程與方法目標:

  通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的`過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

  教學方法:.

  1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

  3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學目標:

  1.知識目標:二次根式的加減法運算

  2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

  3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

  重難點分析:

  重點:能熟練進行二次根式的加減運算。

  難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

  教學關(guān)鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。

  運用教具:小黑板等。

  教學過程:

問題與情景

師生活動

設(shè)計目的

活動一:

情景引入,導學展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關(guān)注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

問:什么樣的.二次根式能進行加減運算,運算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

引出二次根式加減法則。

3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習,合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補充:

活動三:分層檢測,反饋小結(jié)

教材17頁習題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學到了什么知識?你有什么收獲?

作業(yè):課堂練習冊第5、6頁。

自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。

此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結(jié)果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

3)運算法則的運用是否正確

先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

小結(jié)時教師要關(guān)注:

1)學生是否抓住本課的重點;

2)對于常見錯誤的認識。

把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應(yīng)用意識和能力。

小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

對課堂的問題及時反饋,使學生熟練掌握新知識。

每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

二次根式教案9

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

  二、目標和目標解析

  1.教學目標

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標解析

 。1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

 。2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

  本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

  四、教學過程設(shè)計

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的'結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

  例2 計算

 。1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

  例3 計算

  (1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

  4.綜合運用

  (1)算一算:

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

 。2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

 。3)談一談你對 與 的認識.

  【設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

  (2)運用二次根式性質(zhì)進行化簡需要注意什么?

 。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

 。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

  五、目標檢測設(shè)計

  1. ; ; .

  【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

  2.下列運算正確的是( )

  A. B. C. D.

  【設(shè)計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計意圖】考查學生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

  4.計算: .

  【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

二次根式教案10

  目 標

  1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

  2. 會運用二次根式解決簡單的實際問題;

  3. 進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

  教學設(shè)想

  本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。

  教 學 程序 與 策 略

  一、預習檢測

  1.解決節(jié)前問題:

  如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

  歸納:

  在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

  二、合作交流:

  1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

  讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

  注意解題格式

  教 學 程 序 與 策 略

  三、鞏固練習:

  完成課本P17、1,組長檢查反饋;

  四、拓展提高:

  1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的`高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

  師生共同分析解題思路,請學生寫出解題過程。

  五、課堂小結(jié):

  1.談一談:本節(jié)課你有什么收獲?

  2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

  六、堂堂清

  1: 作業(yè)本(2)

  2:課本P17頁:第4、5題選做。

二次根式教案11

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復習引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的`基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案12

  一、說教材

  首先談一談我對教材的理解。本節(jié)課選自人教版八年級下冊,主要探究二次根式加減法的計算方法。此前學生在學習二次根式的性質(zhì)和乘除法時都有過化簡二次根式的經(jīng)歷,為本節(jié)課的學習做了良好的鋪墊;本節(jié)課的學習為后續(xù)學習二次根式的混合運算打下基礎(chǔ)。

  二、說學情

  再來談?wù)剬W生的情況。這一階段的學生已經(jīng)具備了一定的發(fā)現(xiàn)問題、解決問題的能力,邏輯思維和計算能力也有了很大的提升。因此教師在教學過程中,要針對學生的特點進行有針對的教學,以便于課程內(nèi)容的有效展開。

  三、說教學目標

  基于以上分析,我制定了如下三維教學目標:

  (一)知識與技能

  掌握二次根式加減法的計算方法,并能用以解決簡單問題。

 。ǘ┻^程與方法

  通過探究二次根式加減法的計算方法的過程,進一步感受由特殊到一般的思想,提升運算能力。

 。ㄈ┣楦、態(tài)度與價值觀

  感受數(shù)學和生活息息相關(guān),提升學習數(shù)學的興趣。

  四、說教學重難點

  在教學目標的.實現(xiàn)過程中,教學重點是二次根式加減法的計算方法,教學難點是二次根式加減法的計算方法的探究。

  五、說教法學法

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者、合作者。根據(jù)這一教學理念,本節(jié)課我將采用講授法、練習法、小組合作探究等教學方法。

  六、說教學過程

  下面重點談?wù)勎覍虒W過程的設(shè)計。

  (一)導入新課

  此時我會請學生嘗試總結(jié)二次根式加減法的計算方法。以學生的現(xiàn)有能力,能夠說出其中的關(guān)鍵內(nèi)容。我會在此基礎(chǔ)上予以規(guī)范:一般地,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。

  以上活動使得學生親身經(jīng)歷了知識的形成過程,更容易理解和接受,同時能夠提升分析問題、解決問題與類比遷移等諸多方面的能力。

  (三)課堂練習

  對于本節(jié)課而言,探究計算方法是其中一項目標,鞏固練習也同樣重要。我會選用教材上的例1和例2作為課堂練習題。

  例1的第(1)小題是兩個具體的二次根式相減,相對簡單,直接考查二次根式加減法的計算方法;第(2)小題二次根式的被開方數(shù)中含有字母,更加具有一般性,在一定程度上考驗抽象思維。

  例2第(1)小題難度有所提升,不僅二次根式相對復雜,而且是加減混合運算;第(2)小題更是在加減混合運算的基礎(chǔ)上出現(xiàn)了小括號,并且各括號內(nèi)部無法合并,因此多了一個去括號的步驟。

  這樣的練習題不僅進一步完善了二次根式加減法的計算方法,而且能讓學生體會到二次根式的加減與整式的加減在流程上的一致性,從而建立新舊知識間的聯(lián)系,完善知識體系。

 。ㄋ模┬〗Y(jié)作業(yè)

  最后,我會請學生自主總結(jié)本節(jié)課的收獲,在鍛煉學生的總結(jié)與表達能力的同時獲得教學反饋。

  課后作業(yè)一方面是完成課后練習,再次鞏固二次根式的加減法;另一方面是總結(jié)二次根式的概念、性質(zhì)及運算法則,以便形成系統(tǒng)的認知。

二次根式教案13

  一、案例背景:

  本節(jié)是九年級上學期數(shù)學的起始課。二次根式的學習,是對代數(shù)式的進一步學習。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎(chǔ)。

  二、案例描述:

  1、學習任務(wù)分析:

  通過對數(shù)和平方根、算術(shù)平方根的復習,鼓勵學生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學生數(shù)學書寫格式的規(guī)范,為以后的學習打好基礎(chǔ)。為了使學生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設(shè)計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學生放到主體位置。

  2、學生的認知起點分析:

  學生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準備。另外,學生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的理解。

  案例反思:

  1.下列代數(shù)式若能作為二次根式的被開方數(shù),則求出字母的取值范圍?若不能,則說明理由。1-2a-2a2-1(2+a)2-(a-5)2

  以往對這類問題的回答都是全班回答,有些學生反面信息不能體現(xiàn)出來。采取的`措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。

  2.合作活動:

  第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;

  第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;

  第三位同學——批改者:請你用藍筆批改,若有錯誤,請與解題者商議并請其訂正,完成交給你信任的同學用紅筆復;

  第四位同學——復查者:請你一定要把好關(guān)哦!

  出題者姓名:

  解題者姓名:

  第一個二次根式:

  1. 要使式子的值為實數(shù),求x的取值范圍.

  2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。

  3. 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

  第二個二次根式:

  1. 要使式子的值為實數(shù),求x的取值范圍。

  2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。

  3. 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

  批改者姓名:

  復查者姓名:

  《課程標準》突出了學生在學習中的地位 -- 學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從 “ 主導 ” 變成了 “學生學習活動的組織者、引導者和合作者 ”。合作活動的安排就是對這一課程標準的體現(xiàn)。

二次根式教案14

  第十六章 二次根式

  代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

  5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)寬:3 ;長:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

  解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

  本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

  在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的'針對性,但是學生發(fā)揮主體作用不夠.

  在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

  練習(教材第4頁)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  習題16.1(教材第5頁)

  1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

  6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

  7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

  8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

  9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

  10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

  如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

  〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

  解:由數(shù)軸可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

  已知a,b,c為三角形的三條邊,則+= .

  〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解題策略] 此類化簡問題要特別注意符號問題.

  化簡:.

  〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

  解:當x≥3時,=|x-3|=x-3;

  當x<3時,=|x-3|=-(x-3)=3-x.

  [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

  5

  O

  M

二次根式教案15

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念。

  2.內(nèi)容解析

  本節(jié)課是在學生學習了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學習二次根式的概念。它不僅是對前面所學知識的綜合應(yīng)用,也為后面學習二次根式的性質(zhì)和四則運算打基礎(chǔ)。

  教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義。再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解。

  本節(jié)課的教學重點是:了解二次根式的概念;

  二、目標和目標解析

  1、教學目標

 。1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2、教學目標解析

 。1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

 。2)學生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學問題診斷分析

  對于二次根式的`定義,應(yīng)側(cè)重讓學生理解“的雙重非負性,”即被開方數(shù)≥0是非負數(shù),的算術(shù)平方根≥0也是非負數(shù)。教學時注意引導學生回憶在實數(shù)一章所學習的有關(guān)平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷。

  本節(jié)課的教學難點為:理解二次根式的雙重非負性。

  四、教學過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

 。1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.

 。2)一個長方形圍欄,長是寬的2倍,面積為130?,則它的寬為______.

 。3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系h =5t?,如果用含有h的式子表示t,則t= _____.

  師生活動:學生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當引導和評價。

  【設(shè)計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2上面得到的式子,分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

  【設(shè)計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

  師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如(a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設(shè)計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.

  追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

  師生活動:教師引導學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

  【設(shè)計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.

  3.辨析概念,應(yīng)用鞏固

  例1當時怎樣的實數(shù)時,在實數(shù)范圍內(nèi)有意義?

  師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.

  例2當是怎樣的實數(shù)時,在實數(shù)范圍內(nèi)有意義?呢?

  師生活動:先讓學生獨立思考,再追問.

  【設(shè)計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.

  問題4你能比較與0的大小嗎?

  師生活動:通過分和這兩種情況的討論,比較與0的大小,引導學生得出≥0的結(jié)論,強化學生對二次根式本身為非負數(shù)的理解,

  【設(shè)計意圖】通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生分類討論和歸納概括的能力。

  4.綜合運用,鞏固提高

  練習1完成教科書第3頁的練習。

  練習2當x是什么實數(shù)時,下列各式有意義。

  (1);(2);(3);(4)。

  【設(shè)計意圖】辨析二次根式的概念,確定二次根式有意義的條件。

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維。

  5.總結(jié)反思

  教師和學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題。

 。1)本節(jié)課你學到了哪一類新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動:教師引導,學生小結(jié)。

  【設(shè)計意圖】:學生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法。

  6.布置作業(yè):

  教科書習題16.1第1,3,5,7,10題.

  五、目標檢測設(shè)計

  1、下列各式中,一定是二次根式的是()

  A. B. C. D.

  【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

  2、當時,二次根式無意義.

  【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3、當時,二次根式有最小值,其最小值是.

  【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

  4、對于,小紅根據(jù)被開方數(shù)是非負數(shù),得出的取值范圍是≥.小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出的取值范圍.

  【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

【二次根式教案】相關(guān)文章:

二次根式教案11-10

二次根式教案6篇02-21

二次根式數(shù)學教案11-26

二次根式教案15篇02-15

二次根式教案三篇04-12

二次根式教案合集8篇10-26

二次根式教案匯總10篇10-31

二次根式教案匯總五篇11-01

二次根式教案范文9篇10-29