亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

全等三角形教案

時間:2023-08-29 15:41:30 教案大全 我要投稿

全等三角形教案20篇

  在教學(xué)工作者開展教學(xué)活動前,時常會需要準(zhǔn)備好教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么優(yōu)秀的教案是什么樣的呢?以下是小編整理的全等三角形教案,希望能夠幫助到大家。

全等三角形教案20篇

  全等三角形教案1

  教學(xué)建議

  直角三角形全等的判定

  知識結(jié)構(gòu)

  重點與難點分析:

  本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結(jié)構(gòu)完整、知識理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動,將教與學(xué)融為一體。具體說明如下:

 。1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教

  本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

 。2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

  本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。

  公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

  綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點:一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。

  教法建議:

  由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”

  本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

 。2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

  本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。

  公理的多層次理解包括:明確公理的'條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

  綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點:一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。

  教學(xué)目標(biāo)

  1、知識目標(biāo):

  (1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

  (2)掌握斜邊、直角邊公理;

 。3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.

  2、能力目標(biāo):

 。1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

 。2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

  3、情感目標(biāo):

 。1)在公理的形成過程中滲透:實驗、觀察、歸納;

 。2)通過知識的縱橫遷移感受數(shù)學(xué)的系統(tǒng)特征。

  教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。

  教學(xué)難點:靈活應(yīng)用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。

  教學(xué)用具:直尺,微機

  教學(xué)方法:自學(xué)輔導(dǎo)

  教學(xué)過程

  1、新課引入

  投影顯示

  問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀?/p>

  這個問題讓學(xué)生思考分析討論后回答,教師補充完善。

  2、公理的獲得

  讓學(xué)生概括出HL公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

  公理:有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。

  應(yīng)用格式: (略)

  強調(diào)說明:

 。1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

 。2)、判定兩個直角三角形全等的方法。

 。3)特殊三角形研究思想。

  3、公理的應(yīng)用

  (1)講解例1(投影例1)

  例1求證:有一條直角邊和斜邊上的高對應(yīng)相等的兩個直角三角形全等。

  學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。找學(xué)生代表口述證明思路。

  分析:首先要分清題設(shè)和結(jié)論,然后按要求畫出圖形,根據(jù)題意寫出、已知求證后,再寫出證明過程。

  證明:(略)

  (2)講解例2。學(xué)生分析完成,教師注重完成后的點評。)

  例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

  求證:BE=CF

  分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

  證明:(略)

 。3)講解例3(投影例3)

  例3如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:

  (1)BD=DE+CE

  (2)若直線AE繞A點旋轉(zhuǎn)到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關(guān)系如何,請證明;

  (3)若直線AE繞A點旋轉(zhuǎn)到圖5時(BD>CE),其余條件不變,BD與DE、CE的關(guān)系怎樣?請直接寫出結(jié)果,不須證明

  學(xué)生口述證明思路,教師強調(diào)說明:閱讀問題的思考方法及思想。

  4、課堂小結(jié):

  (1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

  (2)直角三角形判定方法的綜合運用

  讓學(xué)生自由表述,其它學(xué)生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

  5、布置作業(yè):

  a、書面作業(yè)P79#7、9

  b、上交作業(yè)P80#5、6

  板書設(shè)計

  探究活動

  直角形全等的判定

  如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,

  若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變?yōu)槿鐖D(2)時,其余條件不變,上述結(jié)論是否成立,請說明理由。

  全等三角形教案2

  教學(xué)目標(biāo)

  1、知識目標(biāo):

 。1)熟記邊角邊公理的內(nèi)容;

 。2)能應(yīng)用邊角邊公理證明兩個三角形全等。

  2、能力目標(biāo):

  (1) 通過“邊角邊”公理的運用,提高學(xué)生的邏輯思維能力;

  (2) 通過觀察幾何圖形,培養(yǎng)學(xué)生的識圖能力。

  3、情感目標(biāo):

  (1) 通過幾何證明的教學(xué),使學(xué)生養(yǎng)成尊重客觀事實和形成質(zhì)疑的習(xí)慣;

  (2) 通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。

  教學(xué)重點:學(xué)會運用公理證明兩個三角形全等。

  教學(xué)難點:在較復(fù)雜的圖形中,找出證明兩個三角形全等的條件。

  教學(xué)用具:直尺、微機

  教學(xué)方法:自學(xué)輔導(dǎo)式

  教學(xué)過程

  1、公理的發(fā)現(xiàn)

  (1)畫圖:(投影顯示)

  教師點撥,學(xué)生邊學(xué)邊畫圖。

 。2)實驗

  讓學(xué)生把所畫的` 剪下,放在原三角形上,發(fā)現(xiàn)什么情況?(兩個三角形重合)

  這里一定要讓學(xué)生動手操作。

 。3)公理

  啟發(fā)學(xué)生發(fā)現(xiàn)、總結(jié)邊角邊公理:有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等(簡寫成“邊角邊”或“SAS”)

  作用:是證明兩個三角形全等的依據(jù)之一。

  應(yīng)用格式:

  強調(diào):

  1、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

  2、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊,公共角、對頂角、鄰補角、外角、平角等)所以找條件歸結(jié)成兩句話:已知中找,圖形中看。

  3、平面幾何中常要證明角相等和線段相等,其證明常用方法:

  證角相等――對頂角相等;同角(或等角)的余角(或補角)相等;兩直線平行,同位角相等,內(nèi)錯角相等;角平分線定義;等式性質(zhì);全等三角形的對應(yīng)角相等地。

  證線段相等的方法――中點定義;全等三角形的對應(yīng)邊相等;等式性質(zhì)。

  2、公理的應(yīng)用

 。1)講解例1。學(xué)生分析完成,教師注重完成后的總結(jié)。

  分析:(設(shè)問程序)

  “SAS”的三個條件是什么?

  已知條件給出了幾個?

  由圖形可以得到幾個條件?

  解:(略)

 。2)講解例2

  投影例2:

  例2如圖2,AE=CF,AD∥BC,AD=CB,

  求證:

  學(xué)生思考、分析,適當(dāng)點撥,找學(xué)生代表口述證明思路

  讓學(xué)生在練習(xí)本上定出證明,一名學(xué)生板書。教師強調(diào)

  證明格式:用大括號寫出公理的三個條件,最后寫出

  結(jié)論。(3)講解例3(投影)

  證明:(略)

  學(xué)生分析思路,寫出證明過程。

 。ㄍ队罢故緦W(xué)生的作業(yè),教師點評)

  (4)講解例4(投影)

  證明:(略)

  學(xué)生口述過程。投影展示證明過程。

  教師強調(diào)證明線段相等的幾種常見方法。

 。5)講解例5(投影)

  證明:(略)

  學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

  師生共同討論后,讓學(xué)生口述證明思路。

  教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

  3、課堂小結(jié):

  (1)判定三角形全等的方法:SAS

  (2)公理應(yīng)用的書寫格式

  (3)證明線段、角相等常見的方法有哪些?

  讓學(xué)生自由表述,其它學(xué)生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

  6、布置作業(yè)

  a書面作業(yè)P56#6、7

  b上交作業(yè)P57B組1

  思考題:

  板書設(shè)計

  探究活動

  全等三角形教案3

  教學(xué)目標(biāo)

  1。 通過實際操作理解“學(xué)習(xí)三角形全等的四種判定方法”的必要性。

  2。 比較熟練地掌握應(yīng)用邊角邊公理時尋找非已知條件的方法和證明的分析法,初步培養(yǎng)學(xué)生的邏輯推理能力。

  3。 初步掌握“利用三角形全等來證明線段相等或角相等或直線的平行、垂直關(guān)系等”的方法。

  4。 掌握證明三角形全等問題的規(guī)范書寫格式。

  教學(xué)重點和難點

  應(yīng)用三角形的邊角邊公理證明問題的分析方法和書寫格式。

  教學(xué)過程設(shè)計

  一、 實例演示,發(fā)現(xiàn)公理

  1。 教師出示幾對三角形模板,讓學(xué)生觀察有幾對全等三角形,并根據(jù)所學(xué)過的全等三角形的知識動手操作,加以驗證,同時寫出全等三角形的數(shù)學(xué)表達(dá)式。

  2。 在此過程當(dāng)中應(yīng)啟發(fā)學(xué)生注意以下幾點:

  (1) 可用移動三角形使其重合的方法驗證圖3-49中的三對三角形分別全等,并根據(jù)圖中已知的三對對應(yīng)元素分別相等的條件,可以證明結(jié)論成立。如圖3-49(c)中,由AB=AC=3cm,可將△ABC繞A點轉(zhuǎn)到B與C重合;由于∠BAD=∠CAE=120°,保證AD能與AE重合;由AD=AE=5cm,可得到D與E重合。因此△BAD可與△CAE重合,說明△BAD≌△CAE。

 。2) 每次判斷全等,若都根據(jù)定義檢查是否重合是不便操作的,需要尋找更實用的判斷方法——用全等三角形的性質(zhì)來判定。

 。3) 由以上過程可以說明,判定兩個三角形全等,不必判斷三條邊、三個角共六對對應(yīng)元素均相等,而是可以簡化到特定的三個條件,引導(dǎo)學(xué)生歸納出:有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。

  3。畫圖加以鞏固。

  教師照課本上所敘述的過程帶領(lǐng)學(xué)生分析畫圖步驟并畫出圖形,理解“已知兩邊及夾角畫三角形”的方法,并加深對結(jié)論的印象。

  二、 提出公理

  1。板書邊角邊公理,指出它可簡記為“邊角邊”或“SAS”,說明記號“SAS’的含義。

  2。強調(diào)以下兩點:

 。1)使用條件:三角形的兩邊及夾角分別對應(yīng)相等。

 。2)使用時記號“SAS”和條件都按邊、夾角、邊的順序排列,并將對應(yīng)頂點的字母順序?qū)懺趯?yīng)位置上。

  3。板書定理證明應(yīng)使用標(biāo)準(zhǔn)圖形、文字及數(shù)學(xué)表達(dá)式,正確書寫證明過程。

  如圖3-50,在△ABC與△A’B’C’中,(指明范圍)

  三、應(yīng)用舉例、變式練習(xí)

  1。充分發(fā)揮一道例題的作用,將條件、結(jié)論加以變化,進行變式練習(xí),

  例1已知:如圖 3-51, AB=CB,∠ABD=∠CBD。求證:△ABD≌△CBD。

  分析:將已知條件與邊角邊公理對比可以發(fā)現(xiàn),只需再有一組對應(yīng)邊相等即可,這可由公共邊相等 BD=BD得到。

  說明:(1)證明全等缺條件時,從圖形本身挖掘隱含條件,如公共邊相等、公共角相等、對頂角相等,等等。

  (2)學(xué)習(xí)從結(jié)論出發(fā)分析證明思路的方法(分析法)。

  分析:△ABD≌△CBD

  因此只能在兩個等角分別所在的三角形中尋找與AB,CB夾兩已知角的公共邊BD。

  (3)可將此題做條種變式練習(xí):

  練習(xí)1(改變結(jié)論)如圖 3-51,已知 AB=CB,∠ABD=∠CBD。求證:AD=CD,BD平分∠ADC。

  分析:在證畢全等的基礎(chǔ)上,可繼續(xù)利用全等三角形的性質(zhì)得出對應(yīng)邊相等,即AD=CD;對應(yīng)角相等∠ADB=∠CDB,即BD平分∠ADC。因此,通過證明兩三角形全等可證明兩個三角形中的線段相等或和角相關(guān)的結(jié)論,如兩直線平行、垂直、角平分線等等。

  練習(xí)2(改變條件)如圖 3-51,已知 BD平分∠ABC, AB= CB。求證: ∠A=∠C。

  分析:能直接使用的證明三角形全等的條件只有AB=CB,所缺的其余條件分別由公共邊相等、角平分線的定義得出。這樣,在證明三角形全等之前需做一些準(zhǔn)備工作。教師板書完整證明過程如下:

  以上四步是證明兩三角形全等的基本證明格式。

 。4)將題目中的圖形加以有規(guī)律地圖形變換,可得到相關(guān)的一組變式練習(xí),使剛才的解題思路得以充分地實施,并加強例題、習(xí)題之間的有機聯(lián)系,熟悉常見圖形,同時讓學(xué)生總結(jié)常用的尋找所缺邊、缺角條件的方法。

  練習(xí) 3如圖 3-52(c),已知 AB=AE, AD=AF,∠ 1=∠2。求證: DB=FE。

  分析:關(guān)鍵由∠1=∠2,利用等量公理證出∠BAD=∠EAF。

  練習(xí) 4如圖 3-52(d),已知 A為 BC中點, AE//BD, AE=BD。求證: AD//CE。

  分析:由中點定義得出 AB=AC;由 AE//BD及平行線性質(zhì)得出∠ABD=∠CAE。

  練習(xí) 5已知:如圖 3-52(e), AE//BD, AE=DB。求證: AB//DE。

  分析:由 AE//BD及平行線性質(zhì)得出∠ADB=∠DAE;由公共邊 AD=DA及已知證明全等。

  練習(xí)6已知:如圖3-52(f),AE//BD,AE=DB。求證:AB//DE,AB=DE。

  分析:通過添加輔助線——連結(jié)AD,構(gòu)造兩個三角形去證明全等。

  練習(xí) 7已知:如圖 3-52(g), BA=EF, DF=CA,∠EFD=∠CAB。求證:∠B=∠E。

  分析:由DF=CA及等量公理得出DA=CF;由∠EFD=∠CAB及“等角的補角相等”得出∠BAD=∠EFC。

  練習(xí)8已知:如圖3-52(h),BE和CD交于A,且A為BE中點,EC⊥CD于C,BD⊥CD于 D, CE=⊥BD。求證: AC=AD。

  分析:由于目前只有邊角邊公理,因此,必須將角的隱含條件——對頂角相等轉(zhuǎn)化為已知兩邊的夾角∠B=∠E,這點利用“等角的余角相等”可以實現(xiàn)。

  練習(xí) 9已知如圖 3-52(i),點 C, F, A, D在同一直線上, AC=FD, CE=DB, EC⊥CD,BD⊥CD,垂足分別為 C和D。求證:EF//AB。

  在下一課時中,可在圖中連結(jié)EA及BF,進一步統(tǒng)習(xí)證明兩次全等。

  小結(jié):在以上例1及它的九種變式練習(xí)中,可讓學(xué)生歸納概括出目前常用的證明三角形全等時尋找非已知條件的途徑。

  缺邊時:①圖中隱含公共邊;②中點概念;③等量公理④其它。

  缺角時:①圖中隱含公共角;②圖中隱含對頂角;③三角形內(nèi)角和及推論④角平分線定義;

  ⑤平行線的性質(zhì);⑥同(等)角的補(余)角相等;⑦等量公理;⑧其它。

  例2已知:如圖3-53,△ABE和△ACD均為等邊三角形。求證:BD=EC。

  分析:先選擇BD和EC所在的兩個三角形△ABD與△AEC,已知沒有提供任一證兩個三角形全等所需的直接條件,均需由等邊三角形的定義提供。

  四、師生共同歸納小結(jié)

  1。證明兩三角形全等的條件可由定義的六條件減弱到至少幾個?邊角邊公理是哪三個

  條件?

  2。在遇到證明兩三角形全等或用全等證明線段、角的大小關(guān)系時,最典型的分析問題的思路是怎樣的?你體會這樣做有些什么優(yōu)點?

  3。遇到證明兩個三角形全等而邊、角的直接條件不夠時,可從哪些角度入手尋找非已知條件?

  五、練習(xí)與作業(yè)

  練習(xí):課本第28頁中第1題,第30頁中1,3題。

  作業(yè):課本第32頁中第6,7,8,9,10題。

  課堂教學(xué)設(shè)計說明

  本教學(xué)設(shè)計需2課時完成。

  1。課本第3。5節(jié)內(nèi)容安排3課時,前兩課時學(xué)習(xí)三角形全等的邊角邊公理,重點練習(xí)直接應(yīng)用公理及證明格式,初步學(xué)習(xí)尋找證明全等所需的非已知條件的方法,以及利用性質(zhì)證明邊角的數(shù)量關(guān)系及直線的位置關(guān)系,第3課時加以鞏固并學(xué)習(xí)解決應(yīng)用題和兩次全等的`問題。

  2。本節(jié)將“理解全等三角形的判定方法的必要性“列為教學(xué)目標(biāo)之一,目的是引起教師和學(xué)生的重視,只有學(xué)生真正認(rèn)識到了研究判定方法的必要性,才能從思想上接受判定方法,并發(fā)揮出他們的學(xué)習(xí)主動性。

  3。本節(jié)課將“分析法和尋找證明全等三角形時非已知條件的方法”作為教學(xué)目標(biāo)之一,意在給學(xué)生歸納一些常用的解題思路,以便將它作為證明全等三角形的一種技能加以強化。

  4。教材中將“利用證明兩個三角形全等來證明線段或角相等”的方法做為例5出現(xiàn),為時過晚,達(dá)不到訓(xùn)練的目的,因此教師應(yīng)提前到第一、二課時,就教給學(xué)生分析的方法,并從各種角度加以訓(xùn)練。

  5。教師可將例題1和幾種變式練習(xí)制成投作影片(圖3-52)提高課堂教學(xué)效率。教學(xué)使用時,重點放在題目的分析上,并體現(xiàn)出題目之間圖形的變化和內(nèi)在聯(lián)系。

  6。本節(jié)教學(xué)內(nèi)容的兩課時既教會學(xué)生分析全等問題的思路——分析法和尋找非已知條件的方法,又要求他們落實證明的規(guī)范步驟——準(zhǔn)備條件,指明范圍,列齊條件和得出結(jié)論,使學(xué)生遇到證明三角形全等的題目既會快速分析,又會正確表達(dá)。學(xué)生學(xué)生遇到證明三角形全等的題目既會快速分析,又會正確表達(dá)。節(jié)教學(xué)

  全等三角形教案4

  一、教材分析

  本節(jié)課的教學(xué)內(nèi)容是人教版數(shù)學(xué)八年級上冊第十一章 《全等三角形》的第一節(jié).這是全章的開篇,也是全等條件的基礎(chǔ).它是繼線段、角、相交線與平行線及三角形有關(guān)知識之后出現(xiàn)的.通過本節(jié)的學(xué)習(xí),可以豐富和加深學(xué)生對已學(xué)圖形的認(rèn)識,同時為學(xué)習(xí)其他圖形知識打好基礎(chǔ),具有承上啟下的作用.

  教材根據(jù)初中學(xué)生的認(rèn)知規(guī)律和特點,采用由淺入深、由易到難、抓聯(lián)系、促遷移的方法.通過生活中的實例創(chuàng)設(shè)情景,形成概念,再通過平移、翻折、旋轉(zhuǎn)說明變換前后的兩個三角形全等,進而得出全等三角形的相關(guān)概念及其性質(zhì).

  二、教學(xué)目標(biāo)分析

  知識與技能

  1.了解全等三角形的概念,通過動手操作,體會平移、翻折、旋轉(zhuǎn)是考察兩三角形全等的主要方法.

  2.能準(zhǔn)確確定全等三角形的對應(yīng)元素.

  3.掌握全等三角形的性質(zhì).

  過程與方法

  1.通過找出全等三角形的對應(yīng)元素,培養(yǎng)學(xué)生的識圖能力.

  2.能利用全等三角形的概念、性質(zhì)解決簡單的數(shù)學(xué)問題.

  情感、態(tài)度與價值觀

  通過構(gòu)建和諧的課堂教學(xué)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生勇于提出問題,樂于探索問題,同時注重培養(yǎng)學(xué)生善于合作交流的良好情感和積極向上的學(xué)習(xí)態(tài)度.

  三、教學(xué)重點、難點

  重點:全等三角形的概念、性質(zhì)及對應(yīng)元素的確定.

  難點:全等三角形對應(yīng)元素的確定.

  四、學(xué)情分析

  學(xué)生在七年級時已經(jīng)學(xué)過線段、角、相交線與平行線及三角形的有關(guān)知識,并學(xué)習(xí)了一些簡單的說理,已初步具有對簡單圖形的分析和辨識能力,但八年級的學(xué)生仍處于以形象思維為主要思維形式的時期.為了發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的抽象思維能力,本節(jié)課將充分利用動畫演示,來揭示圖形的平移、翻折和旋轉(zhuǎn)等變換過程,以便讓學(xué)生在觀察、分析中獲得大量的感性認(rèn)識,進而達(dá)到對全等三角形的理性認(rèn)識.

  五、教法與學(xué)法

  本節(jié)課堅持“教與學(xué)、知識與能力的辯證統(tǒng)一”和“人人都能獲得必需的數(shù)學(xué)”的原則,博采啟發(fā)教學(xué)法、引探教學(xué)法、講授教學(xué)法等諸多方法之長,借助多媒體手段引導(dǎo)學(xué)生觀察、猜想和探究,促進學(xué)生自主學(xué)習(xí),努力做到教與學(xué)的最優(yōu)組合.

  六、教學(xué)教程

 、.課題引入

  1.電腦顯示

  問題:各組圖形的形狀與大小有什么特點?

  一般學(xué)生都能發(fā)現(xiàn)這兩個圖形是完全重合的。

  歸納:能夠完全重合的兩個圖形叫做全等形。

  2.學(xué)生動手操作

 、旁诩埌迳先我猱嬕粋三角形ABC,并剪下,然后說出三角形的三個角、三條邊和每個角的.對邊、每個邊的對角。

 、茊栴}:如何在另一張紙板再剪一個三角形DEF,使它與△ABC全等?

  (學(xué)生分組討論、提出方法、動手操作)

  3.板書課題:全等三角形

  定義:能夠完全重合的兩個三角形叫做全等三角形

  “全等”用“≌”表示,讀著“全等于”

  如圖中的兩個三角形全等,記作:△ABC≌△DEF

 、.全等三角形中的對應(yīng)元素

  1. 問題:你手中的兩個三角形是全等的,但是如果任意擺放能重合嗎?該怎樣做它們才能重合呢?

  2.學(xué)生討論、交流、歸納得出:

 、.兩個全等三角形任意擺放時,并不一定能完全重合,只有當(dāng)把相同的角重合到一起(或相同的邊重合到一起)時它們才能完全重合。這時我們把重合在一起的頂點、角、邊分別稱為對應(yīng)頂點、對應(yīng)角、對應(yīng)邊。

 、.表示兩個全等三角形時,通常把表示對應(yīng)頂點字母寫在對應(yīng)的位置上,這樣便于確定兩個三角形的對應(yīng)關(guān)系。

 、. 全等三角形的性質(zhì)

  1.觀察與思考:

  尋找甲圖中兩三角形的對應(yīng)元素,它們的對應(yīng)邊

  有什么關(guān)系?對應(yīng)角呢?

  (引導(dǎo)學(xué)生從全等三角形可以完全重合出發(fā)找等量關(guān)系)

  全等三角形的性質(zhì):

  全等三角形的對應(yīng)邊相等.

  全等三角形的對應(yīng)角相等.

  2.用幾何語言表示全等三角形的性質(zhì)

  如圖:∵ABC≌ DEF

  ∴AB=DE,AC=DF,BC=EF

  (全等三角形對應(yīng)邊相等)

  ∠A=∠D,∠B=∠E,∠C=∠F

  (全等三角形對應(yīng)角相等)

 、.探求全等三角形對應(yīng)元素的找法

  1.動畫(幾何畫板)演示

  (1).圖中的各對三角形是全等三角形,怎樣改變其中一個三角形的位置,使它能與另一個三角形完全重合?

  歸納:兩個全等的三角形經(jīng)過一定的轉(zhuǎn)換可以重合.一般是平移、翻折、旋轉(zhuǎn)的方法.

  (2).說出每個圖中各對全等三角形的對應(yīng)邊、對應(yīng)角

  歸納:從運動的角度可以很輕松地解決找對應(yīng)元素的問題.可見圖形轉(zhuǎn)換的奇妙.

  3. 歸納:找對應(yīng)元素的常用方法有兩種:

  (1)從運動角度看

  a.翻折法:一個三角形沿某條直線翻折與另一個三角形重合,從而發(fā)現(xiàn)對應(yīng)元素.

  b.旋轉(zhuǎn)法:三角形繞某一點旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對應(yīng)元素.

  c.平移法:沿某一方向推移使兩三角形重合來找對應(yīng)元素.

  (2)根據(jù)位置元素來推理

  a.有公共邊的,公共邊是對應(yīng)邊;

  b.有公共角的,公共角是對應(yīng)角;

  c.有對頂角的,對頂角是對應(yīng)角;

  d.兩個全等三角形最大的邊是對應(yīng)邊,最小的邊也是對應(yīng)邊;

  e.兩個全等三角形最大的角是對應(yīng)角,最小的角也是對應(yīng)角;

  Ⅴ.課堂練習(xí)

  練習(xí)1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

  你能得出△ACE中哪些角的大小,哪些邊的長度嗎?為什么 ?

  練習(xí)2.△ABC≌△FED

 、艑懗鰣D中相等的線段,相等的角;

 、茍D中線段除相等外,還有什么關(guān)系嗎?請與同伴交

  流并寫出來.

 、.小結(jié)

  1.這節(jié)課你學(xué)會了什么?有哪些收獲?有什么感受?

  2.通過本節(jié)課學(xué)習(xí),我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用一些方法可以找到兩個全等三角形的對應(yīng)元素.這也是這節(jié)課大家要重點掌握的.

 、.作業(yè)

  課本第92頁1、2、3題

  全等三角形教案5

  教學(xué)目標(biāo):

  1、知識目標(biāo):

  (1)知道什么是全等形、全等三角形及全等三角形的對應(yīng)元素;

  (2)知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;

  (3)能熟練找出兩個全等三角形的對應(yīng)角、對應(yīng)邊。

  2、能力目標(biāo):

  (1)通過全等三角形角有關(guān)概念的學(xué)習(xí),提高同學(xué)數(shù)學(xué)概念的辨析能力;

  (2)通過找出全等三角形的對應(yīng)元素,培養(yǎng)同學(xué)的識圖能力。

  3、情感目標(biāo):

  (1)通過感受全等三角形的對應(yīng)美激發(fā)同學(xué)熱愛科學(xué)勇于探索的精神;

  (2)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受,培養(yǎng)同學(xué)勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。

  教學(xué)重點:

  全等三角形的性質(zhì)。

  教學(xué)難點:

  找全等三角形的對應(yīng)邊、對應(yīng)角

  教學(xué)用具:

  直尺、微機

  教學(xué)方法:

  自學(xué)輔導(dǎo)式

  教學(xué)過程:

  1、全等形及全等三角形概念的引入

  (1)動畫(幾何畫板)顯示:

  問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關(guān)系嗎?

  一般同學(xué)都能發(fā)現(xiàn)這兩個三角形是完全重合的。

  (2)同學(xué)自己動手

  畫一個三角形:邊長為4cm,5cm,7cm.然后剪下來,同桌的兩位同學(xué)配合,把兩個三角形放在一起重合。

  (3)獲取概念

  讓同學(xué)用自己的語言敘述:

  全等三角形、對應(yīng)頂點、對應(yīng)角以及有關(guān)數(shù)學(xué)符號。

  2、全等三角形性質(zhì)的發(fā)現(xiàn):

  (1)電腦動畫顯示:

  問題:對應(yīng)邊、對應(yīng)角有何關(guān)系?

  由同學(xué)觀察動畫發(fā)現(xiàn),兩個三角形的三組對應(yīng)邊相等、三組對應(yīng)角相等。

  3、找對應(yīng)邊、對應(yīng)角以及全等三角形性質(zhì)的應(yīng)用

  (1)投影顯示題目:

  D、AD∥BC,且AD=BC

  分析:由于兩個三角形完全重合,故面積、周長相等。至于D,因為AD和BC是對應(yīng)邊,因此AD=BC。C符合題意。

  說明:本題的解題關(guān)鍵是要知道中兩個全等三角形中,對應(yīng)頂點定在對應(yīng)的位置上,易錯點是容易找錯對應(yīng)角。

  分析:對應(yīng)邊和對應(yīng)角只能從兩個三角形中找,所以需將從復(fù)雜的圖形中分離出來

  說明:根據(jù)位置元素來找:有相等元素,其即為對應(yīng)元素:

  然后依據(jù)已知的對應(yīng)元素找:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊(2)全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角。

  說明:利用“運動法”來找

  翻折法:找到中心線經(jīng)此翻折后能互相重合的兩個三角形,易發(fā)現(xiàn)其對應(yīng)元素

  旋轉(zhuǎn)法:兩個三角形繞某一定點旋轉(zhuǎn)一定角度能夠重合時,易于找到對應(yīng)元素

  平移法:將兩個三角形沿某一直線推移能重合時也可找到對應(yīng)元素

  求證:AE∥CF

  分析:證明直線平行通常用角關(guān)系(同位角、內(nèi)錯角等),為此想到三角形全等后的性質(zhì)――對應(yīng)角相等

  ∴AE∥CF

  說明:解此題的.關(guān)鍵是找準(zhǔn)對應(yīng)角,可以用平移法。

  分析:AB不是全等三角形的對應(yīng)邊,

  但它通過對應(yīng)邊轉(zhuǎn)化為AB=CD,而使AB+CD=AD-BC

  可利用已知的AD與BC求得。

  說明:解決本題的關(guān)鍵是利用三角形全等的性質(zhì),得到對應(yīng)邊相等。

  (2)題目的解決

  這些題目給出以后,先要求同學(xué)獨立思考后回答,其它同學(xué)補充完善,并可以提出自己的看法。教師重點指導(dǎo),師生共同總結(jié):找對應(yīng)邊、對應(yīng)角通常的幾種方法:

  投影顯示:

  (1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;

  (2)全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角;

  (3)有公共邊的,公共邊一定是對應(yīng)邊;

  (4)有公共角的,角一定是對應(yīng)角;

  (5)有對頂角的,對頂角一定是對應(yīng)角;

  兩個全等三角形中一對最長邊(或最大角)是對應(yīng)邊(或?qū)?yīng)角),一對最短邊(或最小的角角)是對應(yīng)邊(或?qū)?yīng)角)

  4、課堂獨立練習(xí),鞏固提高

  此練習(xí),主要加強同學(xué)的識圖能力,同時,找準(zhǔn)全等三角形的對應(yīng)邊、對應(yīng)角,是以后學(xué)好幾何的關(guān)鍵。

  5、小結(jié):

  (1)如何找全等三角形的對應(yīng)邊、對應(yīng)角(基本方法)

  (2)全等三角形的性質(zhì)

  (3)性質(zhì)的應(yīng)用

  讓同學(xué)自由表述,其它同學(xué)補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

  6、布置作業(yè)

  a.書面作業(yè)P55#2、3、4

  b.上交作業(yè)(中考題)

  全等三角形教案6

  教材分析

  《三角形全等復(fù)習(xí)課內(nèi)容》選用義務(wù)教育課程標(biāo)準(zhǔn)實驗教材《數(shù)學(xué)》(華師大版)九年級上冊,三角形全等是初中數(shù)學(xué)中重要的學(xué)習(xí)內(nèi)容之一。本套教材把三角形全等看作是三角形相似的特殊情況,同時三角形全等的概念,三角形全等的識別方法,與命題與證明,尺規(guī)作圖幾部分內(nèi)容相互聯(lián)系緊密,尤其是尺規(guī)作圖中作法的合理性和正確性的解釋依賴于全等知識。本章中三角形全等的識別方法的給出都通過同學(xué)們畫圖、討論、交流、比較得出,注重同學(xué)們實際操作能力,為培養(yǎng)同學(xué)們參與意識和創(chuàng)新意識提供了機會。

  設(shè)計理念:

  針對教材內(nèi)容和初三同學(xué)們的實際情況,組織同學(xué)們通過擺拼全等三角形和探求全等三角形的活動,讓同學(xué)們感悟到圖形全等與平移、旋轉(zhuǎn)、對稱之間的關(guān)系,并通過同學(xué)們動手操作,讓同學(xué)們掌握全等三角形的一些基本形式,在探求全等三角形的過程中,做到有的放矢。然后利用角平分線為對稱軸來畫全等三角形的方法來解決實際問題,從而達(dá)到會辨、會找、會用全等三角形知識的目的。

  教學(xué)目標(biāo):

  1、通過全等三角形的概念和識別方法的復(fù)習(xí),讓同學(xué)們體會辨別、探尋、運用全等三角形的一般方法,體會主動實驗,探究新知的方法。

  2、培養(yǎng)同學(xué)們觀察和理解能力,幾何語言的敘述能力及運用全等知識解決實際問題的能力。

  3、在同學(xué)們操作過程中,激發(fā)同學(xué)們學(xué)習(xí)的興趣,培養(yǎng)同學(xué)們主動探索,敢于實踐的精神,培養(yǎng)同學(xué)們之間合作交流的.習(xí)慣。

  教學(xué)的重點和難點

  重點:運用全等三角形的識別方法來探尋三角形以及運用全等三角形的知識解決實際問題。

  難點:運用全等三角形知識來解決實際問題。

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)問題情境:

  某同學(xué)把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全相同的玻璃,那么你認(rèn)為它應(yīng)保留哪一塊?(教師用多媒體)

  師:請同學(xué)們先獨立思考,然后小組交流意見

  生:…………

  師:上述問題實質(zhì)是判斷三角形全等需要什么條件的問題。

  今天我們這節(jié)課來復(fù)習(xí)全等三角形。(引出課題)。

  師:識別三角形及等的方法有哪些?

  生:SAS 、 SSS、 ASA、 AAS 、 HL。

  復(fù)習(xí)回顧:練習(xí)1、將兩根鋼條AA/、BB/中點O連在一起,使AA/、BB/繞著點O自由轉(zhuǎn)動,做成一個測量工具,則A/B/的長等于內(nèi)槽寬AB,判定△OAB≌△OA/B/現(xiàn)由( )

  練習(xí)2、已知AB//DE,且AB=DE,

 。1)請你只添加一個條件,使△ABC≌△DEF,

  你添加的條件是

 。2)添加條件后,證明△ABC≌△DEF?

  [根據(jù)不同的添加條件,要求同學(xué)們能夠敘述三角形全等的條件和全等的現(xiàn)由,鼓勵同學(xué)們大膽的表述意見]

  二、探求新知:

  師:請同學(xué)們將兩張紙疊起來,剪下兩個全等三角形,然后將疊合的兩個三角形紙片放在桌面上,從平移、旋轉(zhuǎn)、對稱幾個方面進行擺放,看看兩個三角形有一些怎樣的特殊位置關(guān)系?

  請同組合作,交流,并把有代表性的擺放進行投影。

  熟記全等三角形的基本形式,為探求全等三角形打下基礎(chǔ),提醒同學(xué)們注意兩個全等三角形的對應(yīng)邊和對應(yīng)角。同學(xué)們的擺放形式很多,包括那些平時數(shù)學(xué)成績不好的同學(xué)們也躍躍欲試,教師給予肯定和鼓勵激發(fā)他們學(xué)習(xí)的積極性和主動性。

  例1、如圖一張矩形紙片沿著對角線剪開,得到兩張三角形紙片ABC、DEF,再將這兩張三角形紙片擺成右圖的形式,使點B、F、C、D處在同一條直線上,P、M、N為其他直線的交點。

 。1)求證:AB⊥ED

 。2)若PB=BC,請找出右圖中全等三角形,并給予證明。

  用多媒體演示圖形的變化過程。

  師:圖3中AB與ED有怎樣的位置關(guān)系?同同學(xué)們猜想一下結(jié)果。

  生甲:AB垂直ED

  師:為什么?可以從幾方面來考慮?

  生乙:可以從圖形運動變化的過程來考慮

  生丙:可以考慮全等在已知條件下,顯然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

 。ǜ鶕(jù)同學(xué)們的回答,教師板演)

  師:若PB=BC,找出右圖中全等三角形,看看誰能找得最快?

  生。骸鱌BD≌△CBA(ASA)

  師:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

  師:還有其他三角形全等嗎?

  生:有,我連接BN,由勾股定理得PN=CN,就不難得到△APN≌△DCN。

 。ㄔ阱e綜復(fù)雜的圖形中尋找全等三角形是一件不容易的事,要鼓勵同學(xué)們大膽的猜想,努力探求,在同學(xué)們的敘述過程中,教師及時糾正同學(xué)們敘述中的錯誤,訓(xùn)練同學(xué)們嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。)

  例2、(動手畫)(1)已知OP為∠AOB平分線,請你利用該圖畫一對以O(shè)P所在直線為對稱軸的全等三角形。

  教師在黑板上畫好∠AOB和直線OP,同學(xué)們獨立思考,然后請幾個同學(xué)們在黑板上演示。

  師生總結(jié):想要畫出符合條件的三角形,只要在射線OA、OB上找到一對關(guān)于OP對稱的點就可以了。

  (2)利用上圖作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分線,AD、CE相交于F,請判斷FE與FD間數(shù)量關(guān)系。

  師:請同學(xué)們用三角尺和量角器準(zhǔn)確畫出此圖,然后量出EF、FD的長度,看看EF與FD長度

  關(guān)系如何?

  生:基本相等。

  生:長度相等。

  師:如何來證明他們相等?注意審題。

  同學(xué)們先獨立思考后,組內(nèi)交流,等到有同學(xué)舉手發(fā)言。

  生:在AC上取點H,使AH=AE,則△AEF≌△AHF則EF=FH

  師:為什么要這么做?你是怎么想到的?

  生:因為要證明線段相等要考慮三角形全等,而EF、FD所在兩個三角形顯然不全等,又AD是平分線,在AC上找出E關(guān)于AD有對稱點H得到△AEF≌△AHF。

  師:這樣只能得到EF=FH。

  生:再證明△FHC≌△FDC。

  生:先求出AD、CE是角平分線∠APC=1200,則∠DPC=∠EPA=∠APH=600,所以∠HPC=

  ∠DPC=600,PC=PC,∠3=∠4,因為△HCP≌△DCP(ASA)所以PD=PH。

 。ǹ辞孱}意,猜想結(jié)果是解決探究題的重要環(huán)節(jié),教師要留給同學(xué)們一定思考時間,同時鼓勵同學(xué)們嘗試和交流,鼓勵同學(xué)們勇于探索以及同學(xué)之間的合作。)

  師生共同小結(jié):

  1、熟記全等三角形的基本形態(tài),會找全等三角形的對應(yīng)邊和對應(yīng)角。

  2、在錯綜復(fù)雜的幾何圖形中能夠?qū)ふ胰热切巍?/p>

  3、利用角平分線的對稱性構(gòu)造三角形全等,并利用三角形的全等性質(zhì)解決線段之間的等量關(guān)系。

  4、運用全等三角形的識別法可以解決很多生活實際問題。

  作業(yè)

  1、在例2中,如果∠ACB不是直角,而(1)中的其他條件不變,請問:你在(1)中所得結(jié)論能成立嗎?若成立,請證明,若不成立,請說明理由。

  2、書本課后復(fù)習(xí)題

  教學(xué)反思

  本教學(xué)設(shè)計從以下三方面考慮:

  1、根據(jù)同學(xué)們的學(xué)習(xí)情況,改進同學(xué)們的學(xué)習(xí)方式,強調(diào)合作交流,探索學(xué)習(xí),教師在教學(xué)過程中,努力為同學(xué)們創(chuàng)設(shè)自主探索的氛圍,讓同學(xué)們真正成為課堂主體。

  2、重視對同學(xué)們能力的培養(yǎng),除常規(guī)的鼓勵就大膽思考,積極發(fā)言,重視培養(yǎng)同學(xué)們觀察、操作、測試、思考的能力,同學(xué)們的活躍,他們思考問題的方式是多種多樣,教師從對完全更改,尊重他們的學(xué)習(xí)方式,這樣有助于創(chuàng)新

  3、重視對同學(xué)們學(xué)習(xí)習(xí)慣的培養(yǎng),全等三角形是幾何部分內(nèi)容說明書,有較強邏輯性,教師板演,以及在同學(xué)們敘述中糾正同學(xué)們的錯誤,是培養(yǎng)同學(xué)們養(yǎng)成良好的習(xí)慣之一,同時同學(xué)們學(xué)習(xí)習(xí)慣多方面的,在合作交流中,培養(yǎng)同學(xué)們合作意識和合作習(xí)慣培養(yǎng)顯得尤為重要。

  全等三角形教案7

  課程內(nèi)容

  邊邊邊判定定理

  選用教材

  人教版數(shù)學(xué)八年級上冊

  授課人

  崔志偉

  授課章節(jié)

  第十二章第二節(jié)

  學(xué) 時

  1

  教學(xué)重點

  掌握全等三角形的判定定理邊邊邊,能運用該定理解決實際問題。

  教學(xué)難點

  探索三角形全等的條件,以及運用邊邊邊定理畫一角等于已知角

  教學(xué)方法

  學(xué)生合作探究法、教師講解結(jié)合談話法等綜合教學(xué)方法

  教學(xué)手段

  黑板板書教學(xué)

  課 堂 教 學(xué) 設(shè) 計

  階段

  教學(xué)內(nèi)容

  導(dǎo)入部分

  采用復(fù)習(xí)導(dǎo)入,教師首先提問學(xué)生回顧全等三角形的定義,以及全等三角形的性質(zhì)。

  學(xué)生在復(fù)習(xí)以上知識的條件下教師做出解釋,上節(jié)課我們已經(jīng)學(xué)習(xí)了三角形在滿足三邊對應(yīng)相等,三角對應(yīng)相等,則兩三角形全等,那么在實際的運用過程中,需要這么多條件運用會很不方便,那么我們很容易想到,能不能簡化條件,得出三角形全等呢?由此引出課題全等三角形的判定。

  階段

  課堂教學(xué)設(shè)計

  課程新授

  教師讓學(xué)生大膽想象,可以從一組對應(yīng)關(guān)系相等開始探究,逐步上升到兩組對應(yīng)關(guān)系相等三組對應(yīng)關(guān)系相等。

  但是為了節(jié)約時間,可以讓學(xué)生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的情況。

  接下來學(xué)生在教師的提問下思考二組對應(yīng)條件的所有可能的情況,預(yù)設(shè)會有思考不全面的同學(xué),教師即使揭示在一組邊與一組角相等的情況下,邊與角的關(guān)系可以為相鄰,也有可能為相對。

  學(xué)生在教師的提示下,探索發(fā)現(xiàn)滿足兩組對應(yīng)關(guān)系相等的三角形不一定全等,由此可以斷定一組對應(yīng)關(guān)系相等也不能作為判定三角形全等的條件。接下來直接考慮三組對應(yīng)相等關(guān)系的情況。

  首先引導(dǎo)學(xué)生對三組對應(yīng)關(guān)系相等進行分類。

  預(yù)設(shè)學(xué)生部分可以全部考慮到,部分學(xué)生考慮不周到,這時教師可以請會的同學(xué)展示被同學(xué)忽略的情況即兩組角與一組對邊對應(yīng)相等時,邊可以為對邊,也可以為鄰邊。

  本節(jié)課將引導(dǎo)學(xué)生探索三邊相等的情形,有了前面兩組對應(yīng)相等的經(jīng)驗,預(yù)設(shè)學(xué)生根據(jù)尺規(guī)作圖可以畫出三邊等于已知三角形的三角形,接下來通過三角形全等的'定義,讓學(xué)生動手操作進行驗證,發(fā)現(xiàn)可以完全重合,由此我們得到三組邊對應(yīng)相等的三角形全等。即SSS,教師解釋S為英文邊,side的首字母。

  接下來請同學(xué)說出已知三角形與所作三角形之間存在的對應(yīng)相等關(guān)系,預(yù)設(shè)學(xué)生可以很輕易說出。

  由此教師揭示,實際上我們還學(xué)回了一個做角等于一只角的另外一種做法,即運用尺規(guī)作圖畫一角等于已知角。接下來,教師稍作解釋,請學(xué)生探究討論作圖步驟?凑l的最簡便。

  學(xué)生探索過后,教師請學(xué)生回答自己的作圖步驟,最后由教師板書最簡易的作圖步驟。

  之后我將用練習(xí)的方式,加深同學(xué)對邊邊邊判定定理的理解并加強應(yīng)用能力。

  作業(yè)

  作業(yè)為書上的練習(xí)第二題,以及課后作業(yè)的第四題對應(yīng)基礎(chǔ)性練習(xí)即鞏固性練習(xí)。

  板書設(shè)計

  采用歸納式的板書設(shè)計,主要板書兩種即三種對應(yīng)關(guān)系相等的種類,邊邊邊判定定理的內(nèi)容以及畫一角等于已知角的步驟以及重要練習(xí)的過程。

  小結(jié)

  本結(jié)課內(nèi)容比較多,主要體現(xiàn)在全等三角形判定的探索過程,為了節(jié)約時間,我選擇讓學(xué)生直接從兩個條件開始探究,同時也不影響學(xué)生理解,教師主要以引導(dǎo)為主,學(xué)生自主探索學(xué)習(xí)。

  全等三角形教案8

  教學(xué)目標(biāo):

  1了解全等形及全等三角形的的概念;

  2 理解全等三角形的性質(zhì)

  3 在圖形變換以及實際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺,

  重點:探究全等三角形的性質(zhì)

  難點:準(zhǔn)確的找出兩個全等三角形的對應(yīng)邊,對應(yīng)角

  教學(xué)過程:觀察圖案,指出這些圖案中中形狀與大小相同的圖形。

  獲取概念:全等形、全等三角形、對應(yīng)邊、對應(yīng)角、對應(yīng)頂點 。

  全等形:形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的

  兩個圖形叫做全等形。

  一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

  全等三角形:能夠完全重合的兩個三角形叫做全等三角形。

  “全等”用?表示,讀作“全等于”

  注意:兩個三角形全等時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,如△ abc ≌ △def全等時,點a和點d,點b和點e,點c和點f是對應(yīng)頂點,記作△ abc ≌ △def

  把兩個全等的三角形重合到一起,重合的頂點叫做對應(yīng)頂點,重合的'邊叫做對應(yīng)邊,重合的角叫做對應(yīng)角。通過練習(xí)得出對應(yīng)邊,對應(yīng)角間的關(guān)系。

  即全等三角形性質(zhì):全等三角形的對應(yīng)邊相等;

  全等三角形的對應(yīng)角相等。

  練習(xí)1.2.3.4

  小結(jié):形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的兩個圖

  形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。

  全等三角形性質(zhì):全等三角形的對應(yīng)邊相等;

  全等三角形的對應(yīng)角相等。

  表示三角形全等時應(yīng)注意什么?

  全等三角形教案9

  教學(xué)目標(biāo)

  1、探索兩個直角三角形全等的條件.

  2、掌握兩個直角三角形全等的條件(hl).

  3、了解角平分線的性質(zhì):角的內(nèi)部,到角兩邊距離相等的點,在角平分線上,及其簡單應(yīng)用.

  教學(xué)重點與難點

  教學(xué)重點:直角三角形全等的判定的方法“hl”.

  教學(xué)難點:直角三角形判定方法的說理過程.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,引入新課:

  教師演示一等腰三角形,沿底邊上高裁剪,讓同學(xué)們觀察兩個三角形是否全等?

  二、合作學(xué)習(xí):

  1.回顧:判定兩個直角三角形全等已經(jīng)有哪些方法?

  2.有斜邊和一條直角邊對應(yīng)相等的兩個三角形全等嗎?如何會全等,教師可啟發(fā)引導(dǎo)學(xué)生一起利用畫圖,疊合方法探索說明兩個直角三角形全等的判定方法,可充分讓學(xué)生想象。不限定方法。

  “斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(hl)!

  教師歸納出方法后,要學(xué)生注意兩點:

  <1>“hl”是僅適用于rt△的特殊方法。