亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

因數(shù)和倍數(shù)教學反思

時間:2024-08-25 21:33:45 教學反思 我要投稿

因數(shù)和倍數(shù)教學反思

  作為一位優(yōu)秀的老師,教學是我們的任務之一,寫教學反思能總結(jié)我們的教學經(jīng)驗,那么你有了解過教學反思嗎?下面是小編為大家收集的因數(shù)和倍數(shù)教學反思,僅供參考,希望能夠幫助到大家。

因數(shù)和倍數(shù)教學反思

因數(shù)和倍數(shù)教學反思1

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學習了解到以下信息:簽于學生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎,對整除的含義已經(jīng)有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  雖然學生已接觸過整除與有余數(shù)的除法,但我班學生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學時,補充了兩道判斷題請學生辨析:

  11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的.因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

  特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補了未進行整除概念教學的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進行了對比。

因數(shù)和倍數(shù)教學反思2

  教學片斷:

  1、出示12個小正方形。

  師:數(shù)一數(shù),一共有幾個小正方形?如果老師請你把這12個同樣的小正方形拼成一個長方形,會拼嗎?能不能用一條簡單的乘法算式表達出來?

  2、指名學生列式,提問其他學生:“你知道他是怎么擺的嗎?”要求學生說出每排擺幾個,擺了幾排。

  3、根據(jù)學生的回答,適時貼出各種不同擺法:

  12×1=12

  6×2=12

  4×3=12

  4、12個同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)

  5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。

  6、剛才在聽的時候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句?

  說明:雖然是拗口了點,不過數(shù)學上還真是這么回事。12的'確是12的因數(shù),12也確實是12的倍數(shù)。為了方便,我們在研究倍數(shù)和因數(shù)時所說的數(shù)一般指不是0的自然數(shù)。

  7、說一說

 。1)根據(jù)72÷8=9,說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。

  (2)從下面的數(shù)中任選兩個數(shù),說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。

  3、5、18、20、36

  反思:

  陶老師從擺小正方形入手,提出“每排擺了幾個?”“擺了幾排?”這兩個問題,引導學生用乘法算式把擺法表示出來,再讓學生猜一猜“可能是怎么擺的”,學生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。接著結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù),并讓學生根據(jù)另外兩道乘法算式說說誰是誰的倍數(shù),誰是誰的因數(shù)。再通過除法算式讓學生說說誰是誰的倍數(shù),誰是誰的因數(shù)。最后讓學生從五個數(shù)中任選兩個數(shù)說說誰是誰的倍數(shù),誰是誰的因數(shù),這樣層層深入,學生對倍數(shù)和因數(shù)的感受更加深刻。<

因數(shù)和倍數(shù)教學反思3

  這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學意義,只是借助乘法算式來認識倍數(shù)和因數(shù),從而體會倍數(shù)和因數(shù)的意義,進而讓學生探究尋找一個數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。

  這部分知識對于四年級學生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學們講了韓信點兵的故事,從一個同余問題的解決讓學生產(chǎn)生興趣,并告知學生所用知識與本節(jié)課所學知識有很大關(guān)聯(lián),引導學生認真學好本節(jié)課的知識。

  在教授倍數(shù)和因數(shù)時,我讓學生自己動手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認識倍數(shù)和因數(shù),并且讓學生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學生的自身素材去理解概念,使學生對新知識印象更深刻,從而使學生進一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會倍數(shù)和因數(shù)是一種相互依存的關(guān)系,以致到后面做判斷時出現(xiàn)很多同學認為“6是因數(shù),24是倍數(shù)”這種說法是正確的。

  本節(jié)課的難點是找一個數(shù)的因數(shù),因此,我將教材中先教找一個數(shù)的倍數(shù)改成先教找一個數(shù)的因數(shù),也正因為找一個數(shù)的因數(shù)比較有難度,所以,我先讓學生根據(jù)之前例題中的三個乘法算式來說一說12的因數(shù),從而讓學生感受到找一個數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學生感受有序的思想,給學生一個方法的認知。為了讓學生得到反思,在找的過程中,請學生互評,在交流中產(chǎn)生思維的`碰撞;請學生自己糾正,在錯誤中產(chǎn)生反思意識,從而能夠提升學生自主解決問題的能力。

  可是,作為一名新教師,對于課堂中的生成,沒有足夠的經(jīng)驗和課堂機智將其很好的轉(zhuǎn)化成學生所需達到的目標,以致跟預設的效果不一致,學生沒有很充分地得到反思。并且對于課堂中的一些細節(jié)問題,處理得還不夠到位。本節(jié)課的教學對于我來說是一個機會,也是一個契機,今后,我會不斷完善教學,總結(jié)經(jīng)驗教訓,在各個方面嚴格要求自己,爭取在今后的工作中做的更好!

因數(shù)和倍數(shù)教學反思4

  《因數(shù)和倍數(shù)》是人教版五年級下冊第二章第一課時所學內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識因數(shù)和倍數(shù)的,這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。上完這節(jié)課覺得有以下幾點做得較好:

  1、通過操作實踐,認識因數(shù)和倍數(shù)

  我開門見山,直接入題,創(chuàng)設了有效的數(shù)學學習情境,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義,這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義,使學生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。

  2、通過自主化、活動化、合作化,找因數(shù)和倍數(shù)

  整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、引導者、參與者,。整節(jié)課中,我始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解因數(shù)和倍數(shù)的意義,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。

  3、通過變式拓展,培養(yǎng)學生能力

  課前我精心設計練習題,力求不僅圍繞教學重點,而且注意到練習的層次性,趣味性。譬如:讓學生用所學知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學生判斷自己的.學號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學生的學號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養(yǎng)了學生的發(fā)散思維能力,又使學生享受到了數(shù)學思維的快樂,感悟數(shù)學的魅力。

  但是還存在一些不可忽視的問題:

  1、課上應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。

  2、課堂用語還不夠精煉,應該進一步規(guī)范課堂用語,做到不拖泥帶水。

  3、教者評價應及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來,避免單一化。

因數(shù)和倍數(shù)教學反思5

  本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡體系,是本課程教學的重點和難點。同時,學習整理知識是這門課教學的靈魂。

  成功:

  1。構(gòu)建知識網(wǎng)絡體系,理清知識之間的關(guān)系。在教學中,我首先通過一個聯(lián)想紙牌游戲激發(fā)學生的學習興趣,讓學生用因子和復數(shù)的知識來描述數(shù)字2。學生很容易認為2是最小的素數(shù),2是偶數(shù),2的因子是1和2的倍數(shù),2。有2,4,6和hellip,2。2的倍數(shù)特征是一個位為0、2、4、6、8的數(shù)字,學生回答后,教師及時掌握關(guān)鍵詞,引出本單元的所有概念:因子、倍數(shù)、素數(shù)、復合數(shù)、奇數(shù)、偶數(shù)、公因子、最大公因子、公倍數(shù)、最小公倍數(shù)、,多重特征2、多重特征3和多重特征5。如何使這些雜亂的概念更簡潔、更有序、更能反映知識之間的關(guān)系?通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學生相互學習,相互學習,逐漸對這些概念之間的關(guān)系有了進一步的理解。然后,在選擇了幾個學生的作品進行展示和評價后,最后,教師和學生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡體系。

  2.教學生如何組織知識。在教學中,教人釣魚比教人釣魚更好。作為一名教師,最好教給學生必要的學習方法。在本課的整理和復習中,我要求學生在課前總結(jié)第二單元中因子和倍數(shù)的概念。涉及的概念有:因子、倍數(shù)、公因子、公倍數(shù)、最大公因子、最小公倍數(shù)、素數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的多重特征、3的多重特征、5的多重特征,并提出了具體要求:第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;第三,它們可以用你喜歡的方式表達,也可以用數(shù)學手寫報紙的形式呈現(xiàn)。課前設計完成后,我提前收集了一些有代表性的作品,放在課件中,供學生欣賞,互相學習,互相學習,共同提高。通過小組討論和課堂交流,教師和學生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡圖。

  在本課程的整個設計過程中,通過學生的聯(lián)想,回憶以前學到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡圖就是思維導圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學中的每一個單元、每一卷知識、小學數(shù)學知識,讓學生體會思維導圖法的威力。學生在感嘆這種方法的魅力的同時,也可以將這種方法推廣到其他學科,讓學生真正掌握知識整理的方法,并將其應用到以后的單元知識整理中。

  3.進一步回顧實踐中的概念。在實踐環(huán)節(jié),我根據(jù)這些概念設計了一些相應的練習。目的是通過實踐促進復習,在實踐中更好地理解這些概念的具體含義,加深學生對概念的理解和掌握。在實踐過程中,學生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點的概念有了更清晰的理解,起到了復習和復習舊知識的`作用。

  缺點:

  1。個別學生不會在展覽評價中進行評價,而只是思考設計的美,而不是解釋知識之間的關(guān)系。老師應該在這一點上給他們指導。

  2.有些學生甚至連最小的偶數(shù)都不懂,因為第二單元的知識是在開學時學的,有些知識點已經(jīng)忘記了。因此,他們在學習每一單元后,會繼續(xù)鞏固和實踐自己的知識。

  3.由于知識點太多,實踐時間不足,基本實踐時間可以保證,但需要擴展的知識沒有得到更好的呈現(xiàn)。

  再教育設計:

  1。掌握數(shù)學知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導學生從數(shù)學本質(zhì)出發(fā)思考問題,排除數(shù)學本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學思維品質(zhì)。

  2.我們應該繼續(xù)深入探索數(shù)學的思想、靈魂和方法來指導課堂教學,讓學生掌握未來學習知識的鑰匙,學會打開知識的大門。

因數(shù)和倍數(shù)教學反思6

  在上學期的白紙備課活動中,我們高年段數(shù)學抽到的教學內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學內(nèi)容時,我心里不禁在打鼓,我能找準教學重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認真分析教材,盡自己最大的努力梳理出教學重難點,創(chuàng)設情境、設計游戲來突出重點、突破難點。在設計完教學過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學這個內(nèi)容,很自然的就沒有被以往教材的教學定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個內(nèi)容,仔細參考了教學用書我才真正領悟到了新教材的新穎所在。

  新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關(guān)系的.數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學生不必通過12÷2=6得出12能被2整除,進而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式2×6=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。”

  這樣的設計既減輕了學生的學習負擔又讓學生在學習時盡量避免出現(xiàn)概念混淆、理解困難的問題。學生對新知掌握較牢,在實際教學中我就是這樣處理的,學生樂學,思路清晰。

因數(shù)和倍數(shù)教學反思7

  今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學生體會因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補上。

  滿意的一點:模式的提練

  在讓學生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學生都不知道如何表達。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學生的反應都不錯,馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。

  不滿意的地方在于:對于找出36所有因數(shù)的有序思考沒有強調(diào)。當我讓學生們自主找出36的所有因數(shù)時,許多學生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學生的作業(yè)加以板書,讓學生進行比較。

  如:1、36、2、18、3、12、4、9、6

  1、2、3、4、6、9、12、18、36

  和36÷1=36,36÷2=18,36÷3=12

  36÷4=9,36÷6=6

  尤其是最后一種方法,我特別注意讓學生評價一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的`確是可以,不過,缺少的因數(shù)的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機在這一步讓學生體會尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補充習題上出現(xiàn)了問題,我抓了幾個學生問為什么強調(diào)有序性,學生告訴我:因為可以看得清楚,因為不會遺漏。看起來班上的學生有這方面的意識,在做題目的時候還應該再稍稍提點一下,應該也就不成問題了。

  《因數(shù)和倍數(shù)的練習》教學反思 4月14日

  昨天新學了因數(shù)和倍數(shù),我覺得課上學生表現(xiàn)還可以,很會說,但到了家自己做家作時,問題很多。今天進行了練習后,效果截然不同。我在練習前,首先對昨天的內(nèi)容進行了復習。讓學生進一步明確:1、講因數(shù)和倍數(shù)時應該講清誰是誰的倍數(shù)或因數(shù)。2、找一個數(shù)的倍數(shù)和因數(shù)時,倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學生書上練習時,提醒學生弄清每題的具體要求,有些題只要寫出一個數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個,要盡可能把這些數(shù)都找出來。但學生有時找不全,我就教會學生這樣思考:找一個數(shù)的倍數(shù)時用乘法,找一個數(shù)的因數(shù)時用除法。效果還可以。

  今天教學了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學生在掌握因數(shù)、倍數(shù)的概念的基礎上學會找一個數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學效果還可以,但多少還是存在遺憾。

  存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W生閱讀,復述后讓學生觀察尋找記憶的方法,學生總結(jié):像這樣的乘法算式我們可以說兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。再讓學生用因數(shù)、倍數(shù)同桌復述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復述,學生說的蠻好的,可是在分層練習時再讓學生描述其他算式中各數(shù)的關(guān)系時,又部分學生混淆了因數(shù)、倍數(shù)的概念?磥黹_始的復述學生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學生模仿復述后進一步讓學生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學生就會理解只要是兩個整數(shù)相乘等于12,12就是這兩個整數(shù)的倍數(shù),這兩個整數(shù)就都是12的因數(shù)。這樣才能讓學生真正理解乘法算式中各整數(shù)之間的關(guān)系。

  滿意之處:學生在找一個數(shù)的因數(shù)和倍數(shù)時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學生比較各自的方法,在此基礎上選出不會重復、遺漏的簡便方便用學生的名字命名這些方法。再讓學生分別使用這些方法尋找,真實感受這些方法的好處。學生郵箱比較深刻,在后面的分層練習和檢測中沒有學生出現(xiàn)漏或重復的,而且速度也很快。學生的積極性很高,學生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。

因數(shù)和倍數(shù)教學反思8

  因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學生學習理解起來有一定的難度,本節(jié)課是在充分借助學生已有的知識經(jīng)驗的基礎上切入課題。學生在此之前已經(jīng)認識了乘法各部分名稱,對“倍”葉有了初步的認識,從而本課由此入手,讓學生由熟悉的知識經(jīng)驗開始,結(jié)合問題引發(fā)學生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

  在探索找一個數(shù)的因數(shù)的方法時,為了讓學生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復,本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學生難以真正理解的`地方。

  本課中還要注意到的就是學生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學生還不知道這些數(shù)的概念,但這時給學生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學習做好鋪墊。

因數(shù)和倍數(shù)教學反思9

  本節(jié)課的內(nèi)容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的`性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。

  成功之處:

  1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  2.厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

  不足之處:

  1.練習設計容量少了一些,導致課堂有剩余時間。

  2. 對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。

  再教設計:

  1.根據(jù)課本的練習相應的進行補充。

  2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

因數(shù)和倍數(shù)教學反思10

  本節(jié)課是第二單元的第一課時,第二單元的教學內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進行教學,學生理解起來有一定的難度。加強對概念間相互關(guān)系的梳理,引導學生從本質(zhì)上理解概念,避免死記硬背。還有要引導學生用聯(lián)系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

  今天這節(jié)課的教學的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的'角度去觀察事物、思考問題,激發(fā)對數(shù)學的興趣,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。同時,我還出示了一個除法的算式,讓學生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  找出一個數(shù)的因數(shù)要做到不重復和不遺漏,有些學生還不能找全,沒有掌握方法,我在今后的教學中還要注意對學困生的輔導。

因數(shù)和倍數(shù)教學反思11

  本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學生通過四年多數(shù)學學習,已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認識、整數(shù)四則運算的基礎上進一步探索整數(shù)的性質(zhì)。

  在教學中,通過教授學生認識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。

  接下來學習“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的'規(guī)律和特點。在此之前還要向?qū)W生教學什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學習“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導學生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。

  那么,又如何讓學生學習掌握質(zhì)數(shù)與合數(shù)呢?在教學中,我主要是讓學生把1~

  20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學生進行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。

  為了讓學生鞏固質(zhì)數(shù)與合數(shù),再讓學生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。

  最后,再學生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學的知識進行梳理、歸類,讓學生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習,加強的后進生的關(guān)注和輔導。

因數(shù)和倍數(shù)教學反思12

  《因數(shù)和倍數(shù)》這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學習奠定了基礎。

  本節(jié)可充分發(fā)揮學生的主體性,讓每個學生都能參加到數(shù)學知識的學習中去,調(diào)動學生學習的興趣和主動性。本節(jié)課主要從以下幾個方面進行教學的。

  一:動手操作,探究方法.

  我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,變抽象為具體。

  二、倍數(shù)教學,發(fā)現(xiàn)特點。

  利用乘法算式,讓學生找出3的倍數(shù),這里讓學生理解:

 。1)3的`倍數(shù)應該是3與一個數(shù)相乘的積。

 。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點奠定基礎。

  最后讓學生通過討論發(fā)現(xiàn):

 。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。

 。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

  三、因數(shù)教學,發(fā)現(xiàn)特點。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學生進一步理解。強調(diào)有序(從小到大),不重復、不遺漏。隨后讓學生找出15、16的因數(shù)有那些。最后通過比較討論讓學生得出因數(shù)的特點:

 。1)一個數(shù)因數(shù)的個數(shù)是有限的。

 。2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學生明白所有的數(shù)都有因數(shù)1).

  四、練習反饋情況

  從學生的作業(yè)情況來看,大部分學生掌握的還是不錯的,有部分基礎差的學生,有如下幾點錯誤出現(xiàn):

  1、倍數(shù)沒有加省略號。

  2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。

  3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學中要多關(guān)注基礎比較差的學生,注意補差工作;同時要注意教學中細節(jié)的處理。

因數(shù)和倍數(shù)教學反思13

  新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎。我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我從以下三個方面談一點教學體會。

  一、設疑遷移,點燃學習的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進入正題,不僅可以調(diào)動學生的學習興趣,一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

  教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找3的倍數(shù)。我設計了嘗試練——引出沖突——討論探究這么一個學習環(huán)節(jié)。學生帶著“又對又好”的要求開始自主練習,學生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數(shù)學問題,自己發(fā)現(xiàn)問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)

  我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的.概念。 這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  三、注重細節(jié),注重學生的習慣培養(yǎng)

  學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結(jié)合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。

因數(shù)和倍數(shù)教學反思14

  《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學中的“起始概念”一般比較難教,這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學設計上的反思和一些初淺的想法。

  比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎。本課的教學重點是求一個數(shù)的因數(shù),在學生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎上,對學生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學例題“找出18的因數(shù)”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的'理解,找到解決問題的方法(培養(yǎng)學生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學習活動環(huán)節(jié)中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。

  新課標實施的過程是一個不斷學習、探究、研究和提高的過程,在這個過程中,需要我們認真反思、獨立思考、交流探討,學習研究,與學生平等對話,在實踐和探索中不斷前進。

因數(shù)和倍數(shù)教學反思15

  通過今天的學習,你有什么收獲?

  課后作業(yè) :課后自已或與同學合作制作一個含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。

  教后反思:

  40分鐘的時間一閃而過,輕松愉悅的課堂氣氛,讓學生的學習情緒空前高漲,學生的學習熱情,學習過程中數(shù)學思維的提升,都在這短短的時間內(nèi)讓我感覺無盡的驚喜。

  課堂導入,親切,有效,讓學生先在腦海中留下“關(guān)系”這種印象,學生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習、特別是(8是倍數(shù),4是因數(shù)。…… ( ))的辨析,讓學生明白:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的.倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù))。

  因數(shù)和倍數(shù)不能單獨存在。

  通過尋找一個數(shù)的因數(shù),和一個數(shù)的倍數(shù),讓學生通過多個實例找到規(guī)律。

  在教學中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學生時間進行

【因數(shù)和倍數(shù)教學反思】相關(guān)文章:

《倍數(shù)和因數(shù)》教學反思08-15

因數(shù)和倍數(shù)的教學反思09-14

倍數(shù)和因數(shù)的教學反思07-11

因數(shù)和倍數(shù)教學反思(15篇)06-17

因數(shù)和倍數(shù)教學反思15篇11-25

因數(shù)和倍數(shù)教學反思匯編15篇08-24

五年級因數(shù)和倍數(shù)教學反思06-01

五年級下冊因數(shù)和倍數(shù)教學反思10-17

《3的倍數(shù)特征》教學反思08-03

《3的倍數(shù)的特征》教學反思07-29