亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初二

初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)

時(shí)間:2021-11-26 17:08:46 初二 我要投稿

初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)

  漫長(zhǎng)的學(xué)習(xí)生涯中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。那么,都有哪些知識(shí)點(diǎn)呢?以下是小編精心整理的初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)

  初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)1

  不等式的解集:

  ①能使不等式成立的未知數(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  ③求不等式解集的過(guò)程叫做解不等式。

  相信上面的知識(shí)同學(xué)們已經(jīng)能很好的掌握了,希望同學(xué)們?cè)谄綍r(shí)認(rèn)真學(xué)習(xí),很好的把每一個(gè)知識(shí)點(diǎn)掌握。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的.對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

  ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

  通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

  初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)2

  1.常見(jiàn)的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  2.在不等式“a>b”或“a<b”中,a叫作不等式的左邊,b叫作不等式的右邊;< div="">

  3.不等號(hào)的開(kāi)口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;

  4.在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等。

  不等式的性質(zhì)

 、偃绻鹸>y,那么yy;(對(duì)稱性)

 、谌绻鹸>y,y>z;那么x>z;(傳遞性)

 、廴绻鹸>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法原則)

 、苋绻鹸>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

 、萑绻鹸>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

 、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)

  ⑦如果x>y>0,m>n>0,那么xm>yn;

  ⑧如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))[1]

  1、概念:

  在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。

  2、分類:

  不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))

  “≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。

  我們大家在判定不等式時(shí)要記得,在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式。

  1、比較法:包括比差和比商兩種方法。

  2、綜合法

  證明不等式時(shí),從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱為綜合法,它是由因?qū)Ч姆椒ā?/p>

  3、分析法

  證明不等式時(shí),從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個(gè)已經(jīng)證明過(guò)的定理、簡(jiǎn)單事實(shí)或題設(shè)的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。

  4、放縮法

  證明不等式時(shí),有時(shí)根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡(jiǎn),化難為易,達(dá)到證明的目的,這種方法稱為放縮法。

  5、數(shù)學(xué)歸納法

  用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。

  在證明第二步時(shí),一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時(shí),首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個(gè)與命題的條件或已證明的定理或公認(rèn)的簡(jiǎn)單事實(shí)相矛盾的結(jié)論,以此說(shuō)明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。

  初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)3

  不等式

  用小于號(hào)或大于號(hào)表示大小關(guān)系的式子,叫做不等式(inequality)。

  使不等式成立的未知數(shù)的值叫做不等式的解。

  能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡(jiǎn)稱解集(solution set)。

  含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

  不等式的性質(zhì):

  不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

  不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  三角形中任意兩邊之差小于第三邊。

  三角形中任意兩邊之和大于第三邊。

  一元一次不等式組

  把兩個(gè)一元一次不等式合在起來(lái),就組成了一個(gè)一元一次不等式組(linear inequalities of one unknown)。

  初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)4

  1、不等式及其解集

  用“<”或“>”號(hào)表示大小關(guān)系的式子叫做不等式。

  使不等式成立的未知數(shù)的值叫做不等式的解。

  能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡(jiǎn)稱解集。

  含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。

  2、不等式的性質(zhì)

  不等式有以下性質(zhì):

  不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

  不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  3、實(shí)際問(wèn)題與一元一次不等式

  解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。

  4、一元一次不等式組

  把兩個(gè)不等式合起來(lái),就組成了一個(gè)一元一次不等式組。

  幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。

  對(duì)于具有多種不等關(guān)系的問(wèn)題,可通過(guò)不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。

  初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)5

  1.解不等式問(wèn)題的分類

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化為一元一次或一元二次不等式的不等式.

 、俳庖辉叽尾坏仁;

  ②解分式不等式;

 、劢鉄o(wú)理不等式;

 、芙庵笖(shù)不等式;

 、萁鈱(duì)數(shù)不等式;

 、藿鈳Ы^對(duì)值的不等式;

 、呓獠坏仁浇M.

  2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):

  (1)正確應(yīng)用不等式的基本性質(zhì).

  (2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性.

  (3)注意代數(shù)式中未知數(shù)的取值范圍.

  3.不等式的同解性

  (5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

  (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

  (9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0<a<1時(shí),af(x)>ag(x)與f(x)<g(x)同解.

【初二數(shù)學(xué)不等式的解集知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

人教版數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn)10-11

高考數(shù)學(xué)不等式的解法知識(shí)點(diǎn)09-24

初三數(shù)學(xué)知識(shí)點(diǎn)不等式證明總結(jié)08-15

必修五數(shù)學(xué)基本不等式知識(shí)點(diǎn)總結(jié)10-14

初中數(shù)學(xué)不等式的中考知識(shí)點(diǎn)歸納05-28

數(shù)學(xué)基本不等式知識(shí)點(diǎn)提綱10-15

高考數(shù)學(xué)復(fù)習(xí)不等式的解法的知識(shí)點(diǎn)09-22

數(shù)學(xué)高考不等式的基本性質(zhì)知識(shí)點(diǎn)09-20

高考數(shù)學(xué)不等式的基本性質(zhì)知識(shí)點(diǎn)09-05

高考數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)09-21