初二年級上冊數(shù)學(xué)平方公式知識點
漫長的學(xué)習(xí)生涯中,是不是聽到知識點,就立刻清醒了?知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。哪些知識點能夠真正幫助到我們呢?以下是小編幫大家整理的初二年級上冊數(shù)學(xué)平方公式知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。
初二年級上冊數(shù)學(xué)平方公式知識點 篇1
1、平方差公式:(a+b)(·a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
2、完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。兩個數(shù)的和(或差)的平方等于它的平方和,加上(或減去)它們的積的2倍。
3、把一個多項式化成了幾個整式的積的形式,這樣的式子變形叫做這個多項式的因式分解。
4、a2-b2=(a+b)(a-b)兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。
5、a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方。
初二年級上冊數(shù)學(xué)平方公式知識點 篇2
這一章節(jié)的難點是對公式特征的理解,比如對公式中積的一次項系數(shù)的理解。
變符號:
例1:運用完全平方公式計算:
(1)(2y+3x)^2 (2)3(3x+4y)^2
分析:本例改變了公式中a、b的符號,
處理
方法一:把兩式分別變形為再用公式計算(反思得:)
方法二:把兩式分別變形為:后直接用公式計算
方法三:把兩式分別變形為:后直接用公式計算(此法是在把兩個公式統(tǒng)一的基礎(chǔ)上進(jìn)行,易于理解不會混淆)。
(二)、變項數(shù):
例2:計算:
分析:完全平方公式的左邊是兩個相同的二項式相乘,而本例中出現(xiàn)了三項,故應(yīng)考慮將其中兩項結(jié)合運用整體思想看成一項,從而化解矛盾。所以在運用公式時,可先變形為或或者,再進(jìn)行計算。
(三)、變結(jié)構(gòu)
例3:運用公式計算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所給的均是二項式乘以二項式,表面看外觀結(jié)構(gòu)不符合公式特征,但仔細(xì)觀察易發(fā)現(xiàn),只要將其中一個因式作適當(dāng)變形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)^2
(2)(a+b)(-a-b)=-(a+b)^2
(3)(a-b)(b-a)=-(a-b)^2
(四)、簡便運算
例4:計算:
(1)999^2
(2)100.1^2
分析:本例中的999接近1000,100.1接近100,故可化成兩個數(shù)的和或差,從而運用完全平方公式計算。
即:(1)(1000-1)的平方。(2)(100+0.1)的平方
初二年級上冊數(shù)學(xué)平方公式知識點 篇3
完全平方公式是進(jìn)行代數(shù)運算與變形的重要的知識基礎(chǔ),是因式分解的重要公式方法。
完全平方公式
常見錯誤有:
①漏下了一次項
、诨煜
③運算結(jié)果中符號錯誤
、茏兪綉(yīng)用難于掌握。
(a+b)^2=a^2+2ab+b^2。
(a-b)^2=a^2-2ab+b^2
以上兩個公式可合并成一個公式:(a±b)^2=a^2±2ab+b^2。(注意:后面一定是加號)
上述的知識點重點是對完全平方公式的熟記及應(yīng)用。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:
①在同一平面
、趦蓷l數(shù)軸
③互相垂直
、茉c重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的'掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初二年級上冊數(shù)學(xué)平方公式知識點 篇4
(一)學(xué)會推導(dǎo)公式:
(這兩個公式是根據(jù)乘方的意義與多項式的乘法法則得到的),真實體會隨意“創(chuàng)造”的不正確性;
(二)學(xué)會用文字概述公式的含義:
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。叫做完全平方公式.為了區(qū)別,我們把前者叫做兩數(shù)和的完全平方公式,后者叫做兩數(shù)差的完全平方公式。
(三)這兩個公式的結(jié)構(gòu)特征:
1、左邊是兩個相同的二項式相乘,右邊是三項式,是左邊二項式中兩項的平方和,加上或減去這兩項乘積的2倍;
2、左邊兩項符號相同時,右邊各項全用“+”號連接;左邊兩項符號相反時,右邊平方項用“+”號連接后再“-”兩項乘積的2倍(注:這里說項時未包括其符號在內(nèi)).
3、公式中的字母可以表示具體的數(shù)(正數(shù)或負(fù)數(shù)),也可以表示單項式或多項式等數(shù)學(xué)式.
(四)兩個公式的統(tǒng)一:
兩個公式實際上可以看成一個公式:兩數(shù)和的完全平方公式。這樣可以既可以防止公式的混淆又杜絕了運算符號的出錯。
這一章節(jié)的難點是對公式特征的理解,如對公式中積的一次項系數(shù)的理解。
【初二年級上冊數(shù)學(xué)平方公式知識點】相關(guān)文章:
初二數(shù)學(xué)完全平方公式的知識要點12-19
中考數(shù)學(xué)知識點平方差與完全平方公式解析01-26
高二數(shù)學(xué)平方差公式的知識點歸納01-06
高二數(shù)學(xué)《平方差公式》知識點匯總02-05
初二上冊數(shù)學(xué)平方根知識點總結(jié)07-03
初二數(shù)學(xué)平方根知識點01-25