初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇[精品]
總結(jié)是對(duì)取得的成績(jī)、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,是時(shí)候?qū)懸环菘偨Y(jié)了。那么我們?cè)撛趺慈懣偨Y(jié)呢?以下是小編為大家整理的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
1、配方法:所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法:因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角函數(shù)等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法:換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問題易于解決。
4、判別式法與韋達(dá)定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判別式△=b2—4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至解析幾何、三角函數(shù)運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法:在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的'某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的重要方法之一。
6、構(gòu)造法:在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
7、反證法:反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。
用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(。┯/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、等(面或體)積法:平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積(體積),而且用它來(lái)證明(計(jì)算)幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積(體積)關(guān)系來(lái)證明或計(jì)算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。
用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點(diǎn)是把已知和未知各量用面積(體積)公式聯(lián)系起來(lái),通過運(yùn)算達(dá)到求證的結(jié)果。所以用等(面或體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法:在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
10、客觀性題的解題方法:選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1、弧長(zhǎng)公式
n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為L(zhǎng)=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng).
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的計(jì)算.
分析:圓柱的`側(cè)面積=底面周長(zhǎng)×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(zhǎng)是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(zhǎng)的計(jì)算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長(zhǎng),再根據(jù)弧長(zhǎng)公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
①平行四邊形的對(duì)邊相等;
、谄叫兴倪呅蔚膶(duì)角相等;
、燮叫兴倪呅蔚膶(duì)角線互相平分。
。ň匦蔚男再|(zhì))
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、诰匦蔚乃膫(gè)角都是直角;
③矩形的對(duì)角線相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對(duì)角線垂直的矩形;
4對(duì)角線相等的菱形;
2、性質(zhì):
1邊:四邊相等,對(duì)邊平行;
2角:四個(gè)角都相等都是直角,鄰角互補(bǔ);
3對(duì)角線互相平分、垂直、相等,且每長(zhǎng)對(duì)角線平分一組內(nèi)角。
等腰三角形的判定定理
。ǖ妊切蔚腵判定方法)
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡(jiǎn)稱:等角對(duì)等邊。
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
標(biāo)準(zhǔn)差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計(jì)算器——求標(biāo)準(zhǔn)差與方差的一般步驟:
1、打開計(jì)算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計(jì)SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請(qǐng)務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計(jì)存儲(chǔ)器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個(gè)數(shù)據(jù)的輸入。如果想對(duì)此輸入同樣的數(shù)據(jù)時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;
5、標(biāo)準(zhǔn)差的平方就是方差。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
字母表示數(shù)
01、本節(jié)核心
字母可以表示任何數(shù)!
02、用什么樣的字母表示數(shù)?
26個(gè)字母任何一個(gè)其實(shí)都是可以的,因?yàn)橛脕?lái)表示任何一個(gè)數(shù)時(shí),它只是需要一個(gè)符號(hào)而已。但是一般情況下,我們xxxx表示。
03、字母表示數(shù)有何意義?
可以簡(jiǎn)明地表達(dá)問題中的數(shù)量關(guān)系
舉個(gè)栗子~
第一個(gè),圓的半徑可以表示為r,那么該圓的面積是Πr2,周長(zhǎng)就是2Πr
第二個(gè),我們?cè)诘谝徽聦W(xué)的,棱柱,還記得嗎?
n棱柱,有n+2個(gè)面,2n個(gè)頂點(diǎn),3n條
04、用字母表示數(shù)要注意四點(diǎn)
1、在同一個(gè)問題中,不同的量用不同的字母表示。比如說,在長(zhǎng)方形中,如果長(zhǎng)用a表示,寬就不能用a表示了,可以用b表示,不然就會(huì)引起混亂。
2、在特定的情況下,有些字母表示的內(nèi)容有它特定的意義。比如說,在計(jì)算面積和周長(zhǎng)時(shí),習(xí)慣用s表示面積,c表示周長(zhǎng),h表示高。
3、用字母表示數(shù)時(shí),數(shù)字和字母,字母和字母之間的乘號(hào)可以記作_·_或者省略不寫。
4、用字母表示數(shù)需要寫單位名稱時(shí),如果是乘法和分?jǐn)?shù)的形式,可以直接在后面寫上單位名稱,如果出現(xiàn)了+、—,請(qǐng)加上小括號(hào)再寫單位。比如說,(a+5)米和5/a米的區(qū)別。
代數(shù)式
01、代數(shù)式的概念
用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的'一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。
注意:
、俅鷶(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);
②代數(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;
、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。
01、代數(shù)式的書寫格式
、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;
、跀(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;
、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù);
、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;
⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。
、拊诒硎竞停ɑ颍┎畹拇鷶(shù)式后有單位名稱的,則必須把代數(shù)式括起來(lái),再將單位名稱寫在式子的后面。
定義:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
、賳雾(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
注意:
1、單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;
2、單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;
3、當(dāng)單項(xiàng)式的系數(shù)為1或—1時(shí),這個(gè)“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。
、诙囗(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。
整式的加減
01、什么是同類項(xiàng)
1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
2、注意:
、偻愴(xiàng)有兩個(gè)條件:a、所含字母相同;b、相同字母的指數(shù)也相同。
、谕愴(xiàng)與系數(shù)無(wú)關(guān),與字母的排列順序無(wú)關(guān);
③幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。
02合并同類項(xiàng)法則
把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
03去括號(hào)法則
、俑鶕(jù)去括號(hào)法則去括號(hào):
括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。
、诟鶕(jù)分配律去括號(hào):
括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成—1,根據(jù)乘法的分配律用+1或—1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。
04添括號(hào)法則
添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。
05整式的運(yùn)算:
整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的`外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對(duì)于給定的三角形,其外心是的,但一個(gè)圓的內(nèi)接三角形卻有無(wú)數(shù)個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
直角三角形的判定方法:
判定1:定義,有一個(gè)角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,則這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的.三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么
判定6:若在一個(gè)三角形中一邊上的中線等于其所在邊的一半,那么這個(gè)三角形為直角三角形。
判定7:一個(gè)三角形30°角所對(duì)的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。
第二:平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
第五:概率和統(tǒng)計(jì)。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長(zhǎng)問題,第四類是對(duì)稱問題,這也是20xx年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)2:參數(shù)方程定義
一般的,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)t的函數(shù)x=f(t)、y=g(t)
并且對(duì)于t的每一個(gè)允許值,由上述方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡(jiǎn)稱參數(shù),相對(duì)于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的橋梁,可以是一個(gè)有物理意義和幾何意義的變數(shù),也可以是沒有實(shí)際意義的變數(shù)。
第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)3:參數(shù)方程
圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標(biāo)r為圓半徑θ為參數(shù)
橢圓的'參數(shù)方程x=acosθy=bsinθa為長(zhǎng)半軸長(zhǎng)b為短半軸長(zhǎng)θ為參數(shù)
雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實(shí)半軸長(zhǎng)b為虛半軸長(zhǎng)θ為參數(shù)
拋物線的參數(shù)方程x=2pt?y=2ptp表示焦點(diǎn)到準(zhǔn)線的距離t為參數(shù)
直線的參數(shù)方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù)
第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)4:幾何
(1)題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右, 占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒有遺漏,通過對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn), 對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí), 考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
、 求曲線方程( 類型確定、類型未定);
、谥本與圓錐曲線的交點(diǎn)問題(含切線問題);
、叟c曲線有關(guān)的最(極)值問題;
、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
⑤探求曲線方程中幾何量及參數(shù)間的數(shù)量特征;
(3)能力立意,滲透數(shù)學(xué)思想:一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個(gè)條件不成立,則不是二次根式;
。2)是一個(gè)重要的非負(fù)數(shù),即; ≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大。
。2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大;
。3)分別平方,然后比大小。
6、商的算術(shù)平方根:,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡(jiǎn)二次根式:
。1)滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式,
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,
②被開方數(shù)中不含能開的盡的因數(shù)或因式;
。2)最簡(jiǎn)二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡(jiǎn)二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式。
9、同類二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
10、二次根式的混合運(yùn)算:
(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的`,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;
(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡(jiǎn)單,但是適用范圍較;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡(jiǎn)便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當(dāng)ax2+bx+c=0
(a≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請(qǐng)注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;
Δ=0 <=>有兩個(gè)相等的實(shí)根;Δ<0 <=>無(wú)實(shí)根;
4.初三數(shù)學(xué)二次函數(shù)圖像
對(duì)于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對(duì)稱。
、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對(duì)稱。
③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對(duì)稱。
④y=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對(duì)稱。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)
對(duì)于頂點(diǎn)式:
①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對(duì)稱,即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對(duì)稱,橫坐標(biāo)相反、縱坐標(biāo)相同。
、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對(duì)稱,即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對(duì)稱,橫坐標(biāo)相同、縱坐標(biāo)相反。
、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(h,k)相同,開口方向相反。
、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對(duì)稱,橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對(duì)f(x)來(lái)說f(-x),-f(x),-f(-x)的情況)
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
一、重要概念
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。
4.相反數(shù):
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
①定義(三要素)
、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:
、俣x(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;
③數(shù)a的絕對(duì)值只有一個(gè);
、芴幚砣魏晤愋偷念}目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。
二、實(shí)數(shù)的'運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從左
到右(如5 C.(有括號(hào)時(shí))由小到中到大。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號(hào)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
不等式的概念
1、不等式:用不等號(hào)表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。
3、對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡(jiǎn)稱這個(gè)不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號(hào)是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號(hào)改為等號(hào)所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號(hào)3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無(wú)解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個(gè)不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
6、不等式與不等式組
不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的`方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
7、不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
【初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)10-25
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-10
初三數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)11-22
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)11-18
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)06-19
關(guān)于初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)06-16