- 相關推薦
初一數(shù)學二元一次方程組知識總結
二元一次方程組的知識點是比較難記的要領,下面的小編為大家分享的是初一數(shù)學知識點總結之二元一次方程組,想要鞏固的同學可以過來看看。
初一數(shù)學二元一次方程組知識總結1
8.1 二元一次方程組
方程中含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數(shù)的個數(shù)由多化少、逐一解決的想法,叫做消元思想。
以上就是的小編為大家?guī)淼某跻粩?shù)學知識點總結之二元一次方程組,希望同學們能夠靈活的運用,接下來還有更詳細的初中數(shù)學知識點盡在哦,希望同學們關注了。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
、僭谕黄矫
②兩條數(shù)軸
、刍ハ啻怪
④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y果必須是整式
②結果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟
①確定公因式。
②確定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意
、俨粶蕘G字母
②不準丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負號放括號外
、呃ㄌ杻(nèi)同類項合并。
初一數(shù)學二元一次方程組知識總結2
二元一次方程組
1、二元一次方程
、俣淮畏匠
含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。
②二元一次方程的解
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
2、二元一次方程組
、俸袃蓚未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
、诙淮畏匠探M的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
③二元一次方程組的解法
代入(消元)法
加減(消元)法
、芤淮魏瘮(shù)與二元一次方程(組)的關系:
一次函數(shù)與二元一次方程的關系:
直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx— y+b=0的解
一次函數(shù)與二元一次方程組的關系:
二元一次方程組
的解可看作兩個一次函數(shù)
和的圖象的交點。
當函數(shù)圖象有交點時,說明相應的二元一次方程組有解;
當函數(shù)圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。
成績不理想的原因
1、對知識點的理解停留在一知半解的層次上;
2、解題始終不能把握其中關鍵的數(shù)學技巧,孤立的看待每一道題,缺乏舉一反三的能力;
3、解題時,小錯誤太多,始終不能完整的解決問題;
4、解題效率低,在規(guī)定的時間內(nèi)不能完成一定量的題目,不適應考試節(jié)奏;
5、未養(yǎng)成總結歸納的習慣,不能習慣性的歸納所學的知識點;
6、學習缺少科學性,上課不認真記筆記,課后不能及時鞏固、復習;忙于應付作業(yè),對知識不求甚解。
7、忽視基礎,有些“自我感覺良好”的學生,常輕視基礎知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,反而對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,沒有堅實的基礎和基本功,到考試時取得不了高分;
8、忽視作業(yè)或練習,缺乏對問題的深入思考,有時練習冊上的答案由于印刷錯誤,孩子們作業(yè)做完后核對答案時不相信自己的結論,把自己的答案一劃,把錯誤答案抄上;書寫規(guī)范性差;
9、周練考試出錯率高,一種是一時想不出怎么做,事后會做,臨場狀態(tài)不好;第二種是表面上會做,但由于審題不仔細,對概念理解不清,計算不準確;第三種是時間不夠,解題速度慢,平時做題習慣不好,不講速度;第四種是根本做不出來,基本功不行,更欠缺融會貫通能力。
以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學們可能就會出現(xiàn)成績的滑坡。相反,如果能夠打好初一數(shù)學基礎,初二的學習只會是知識點上的增多和難度的增加,在學習方法上同學們是很容易適應的。
數(shù)學的意義與價值
數(shù)學是研究數(shù)量、結構、變化以及空間模型等概念的一門古老而常新的學科,是由計數(shù)、計算、量度和對物體形狀及運動的觀察中產(chǎn)生的。數(shù)學的發(fā)生和發(fā)展經(jīng)過了漫長的歷史階段,它具有精確性、抽象性、嚴格性、廣泛性等特點,其中抽象是數(shù)學與生俱來的特征,導致了它的深邃和睿智。
數(shù)學已經(jīng)一百多個分支,數(shù)學的應用已深入到自然科學、技術科學和社會人文科學的各個領域,以及社會生活的各個方面;A數(shù)學的知識與運用更是個人與團體生活中不可或缺的一部分。
數(shù)學被應用在很多不同的領域上,包括科學、工程、醫(yī)學和經(jīng)濟學等。數(shù)學在這些領域的應用一般被稱為應用數(shù)學,有時亦會激起新的數(shù)學發(fā)現(xiàn),并促成全新數(shù)學學科的發(fā)展。
【初一數(shù)學二元一次方程組知識總結】相關文章:
初一數(shù)學二元一次方程組應用題五種題型知識點01-20
解二元一次方程組教案03-31
八年級數(shù)學二元一次方程組知識點10-09
七年級下冊數(shù)學有關二元一次方程組的知識點05-22
七年級數(shù)學下冊二元一次方程組的應用知識點04-19
二元一次方程組練習題11-24
《二元一次方程組》教學反思(精選20篇)04-23
二元一次方程組教學設計(精選5篇)05-07