初中數(shù)學(xué)一元一次不等式組教學(xué)設(shè)計(jì)
初中數(shù)學(xué)一元一次不等式組教學(xué)設(shè)計(jì)已經(jīng)為大家準(zhǔn)備好啦,老師們,大家可以參考以下教案內(nèi)容,整理好自己的授課思路哦!
教學(xué)目標(biāo)
1、知識(shí)與技能:
。1)理解一元一次不等式組及其解集的意義;
。2)掌握一元一次不等式組的解法。
2、過(guò)程與方法:
。1)經(jīng)歷通過(guò)具體問(wèn)題抽象出不等式組的過(guò)程,培養(yǎng)學(xué)生逐步形成分析問(wèn)題和解決問(wèn)題的能力。
。2)經(jīng)歷一元一次不等式組解集的探究過(guò)程,培養(yǎng)學(xué)生的觀察能力和數(shù)形結(jié)合的思想方法,滲透類比和化歸思想。
3、情感、態(tài)度與價(jià)值觀:
(1)感受數(shù)形結(jié)合思想在數(shù)學(xué)學(xué)習(xí)中的作用,養(yǎng)成自主探究的良好學(xué)習(xí)習(xí)慣。
。2)學(xué)生在解不等式組的過(guò)程中體會(huì)用數(shù)學(xué)解決問(wèn)題的直觀美和簡(jiǎn)潔美。
2學(xué)情分析
本節(jié)討論的對(duì)象是一元一次不等式組。幾個(gè)一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎(chǔ)上發(fā)展的新概念;從組成形式上看,一元一次不等式組與第八章學(xué)習(xí)的方程組有類似之處,都是同時(shí)滿足幾個(gè)數(shù)量關(guān)系,所求的都是集合不等式解集的公共部分或幾個(gè)方程的公共解。因此,在本節(jié)教學(xué)中應(yīng)注意前面的基礎(chǔ),讓學(xué)生借助對(duì)已學(xué)知識(shí)的認(rèn)識(shí)學(xué)習(xí)新知識(shí)。
另外,本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數(shù)學(xué)建模思想學(xué)習(xí),是今后利用一元一次不等式組解決實(shí)際問(wèn)題的關(guān)鍵,是后續(xù)學(xué)習(xí)一元二次方程、函數(shù)的重要基礎(chǔ),具有承前啟后的重要作用。另外,在整個(gè)學(xué)習(xí)過(guò)程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)形結(jié)合的思想對(duì)學(xué)生今后學(xué)習(xí)數(shù)學(xué)有著重要的影響。
3重點(diǎn)難點(diǎn)
1、教學(xué)重點(diǎn):對(duì)一元一次不等式組解集的認(rèn)識(shí)及其解法。
2、教學(xué)難點(diǎn):對(duì)一元一次不等式組解集的認(rèn)識(shí)及確定。
3、教學(xué)關(guān)鍵:利用數(shù)軸確定不等式組中各個(gè)不等式解集的公共部分。
4教學(xué)過(guò)程4.1第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】溫故知新
教師提問(wèn):
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
針對(duì)性練習(xí):
。ㄔO(shè)計(jì)意圖:檢驗(yàn)學(xué)生是否理解和掌握一元一次不等式的相關(guān)概念,為本節(jié)新課內(nèi)容的學(xué)習(xí)做好鋪墊。同時(shí)對(duì)解不等式中的相關(guān)要點(diǎn)加以強(qiáng)調(diào):①解不等式中,系數(shù)化為1時(shí)不等號(hào)的方向是否要改變;②在數(shù)軸上表示解集時(shí)“實(shí)心圓點(diǎn)”和“空心圓圈”的選擇;③要正確理解利用數(shù)軸表示出來(lái)的不等式解集的幾何意義。)
活動(dòng)2【講授】創(chuàng)設(shè)問(wèn)題情景,探索新知
1、問(wèn)題(課本第127頁(yè)):用每分鐘可抽30 t水的抽水機(jī)來(lái)抽污水管道里積存的污水,估計(jì)積存的污水
超過(guò)1 200 t而不足1 500 t,那么將污水抽完所用時(shí)間的范圍是什么?
。ㄔO(shè)計(jì)意圖:結(jié)合生活實(shí)例,讓學(xué)生經(jīng)歷通過(guò)具體問(wèn)題抽象出不等式組的過(guò)程,即經(jīng)歷知識(shí)的拓展過(guò)程,讓學(xué)生體會(huì)到數(shù)學(xué)學(xué)習(xí)的內(nèi)容是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的。)
2、引導(dǎo)學(xué)生找出問(wèn)題中“積存的污水”需同時(shí)滿足的兩個(gè)不等關(guān)系:
超過(guò)1 200 t和不足1 500 t。
3、問(wèn)題1:如何用數(shù)學(xué)式子表示這兩個(gè)不等關(guān)系?
1)引導(dǎo)學(xué)生一起把這個(gè)實(shí)際問(wèn)題轉(zhuǎn)換為數(shù)學(xué)模型:
滿足一個(gè)不等關(guān)系我們可列一個(gè)不等式,滿足兩個(gè)不等關(guān)系可以列出兩個(gè)不等式。
設(shè)用x min將污水抽完,則x需同時(shí)滿足以下兩個(gè)不等式:
30x>1200, ①
30x<1500 ②
2)教師歸納一元一次不等式組的意義:
由于未知數(shù)x需同時(shí)滿足上述兩個(gè)不等式,那么類似于方程組,我們把這樣兩個(gè)不等式合起來(lái),就組成一個(gè)一元一次不等式組。
(設(shè)計(jì)意圖:把實(shí)際問(wèn)題轉(zhuǎn)換為數(shù)學(xué)模型,同時(shí)讓學(xué)生根據(jù)一元一次不等式和二元一次方程組的有關(guān)概念來(lái)類推一元一次不等式組的有關(guān)概念,滲透類比和化歸思想。)
4、問(wèn)題2:怎樣確定不等式組中既滿足不等式①同時(shí)又滿足不等式②的x的可取值范圍?
1)教師分析:對(duì)于一元一次不等式組來(lái)說(shuō),組成不等式組的每一個(gè)不等式中都只含有一個(gè)未知數(shù),
運(yùn)用前面解一元一次不等式的知識(shí),我們就能直接求出不等式組中的每一個(gè)一元一次不等式的解集。
2)得到解不等式組的第一個(gè)步驟:分別直接求出這兩個(gè)不等式的解集。學(xué)生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教師引導(dǎo)學(xué)生根據(jù)題意,容易得到:在這兩個(gè)解集中,由于未知數(shù)x既要滿足x>40,也要同時(shí)滿足x<50,因此x>40和x<50這兩個(gè)解集的公共部分,就是不等式組中x可以取值的范圍。
。ㄔO(shè)計(jì)意圖:讓學(xué)生在教師的引導(dǎo)下探究不等式組的解集及其解法,養(yǎng)成自主探究的良好學(xué)習(xí)習(xí)慣。)
5、問(wèn)題3:如何求得這兩個(gè)解集的公共部分?
學(xué)生活動(dòng):將不等式①和②的解集在同一條數(shù)軸上分別表示出來(lái)。
。ㄔO(shè)計(jì)意圖:?jiǎn)l(fā)學(xué)生可利用數(shù)軸的直觀性幫助我們尋找這兩個(gè)不等式解集的公共部分。)
教師活動(dòng):利用多媒體課件,用三種不同形式表示這兩個(gè)解集,幫助學(xué)生求得這個(gè)公共部分。
。ㄔO(shè)計(jì)意圖:結(jié)合介紹利用數(shù)軸確定公共部分的三種不同形式,突破本節(jié)課的難點(diǎn),培養(yǎng)學(xué)生的觀察能力和數(shù)形結(jié)合的思想方法。)
形式一:用兩種不同顏色表示這兩個(gè)解集
1)通過(guò)設(shè)置以下幾個(gè)問(wèn)題,要求學(xué)生通過(guò)觀察、分組討論、取值驗(yàn)證,自主得出結(jié)論。
。1)這兩種顏色把數(shù)軸分成幾個(gè)部分?
。2)每一個(gè)部分分別表示哪些數(shù)?
。3) 請(qǐng)每一小組的同學(xué)從這幾個(gè)部分中各取2~3個(gè)數(shù),分別代入兩個(gè)不等式中,同時(shí)思考:哪部分的數(shù)既滿足不等式①同時(shí)又滿足不等式②?
2)學(xué)生通過(guò)自主探究、合作交流,得到這3個(gè)問(wèn)題的正確答案。
3)得出結(jié)論:
只有紅色和藍(lán)色重疊的部分才既滿足不等式①又同時(shí)滿足不等式②。因此,紅色和藍(lán)色重疊的部分就是我們要找的x的可取值范圍。
4)教師提問(wèn):兩個(gè)不等式解集的界點(diǎn):即實(shí)數(shù)40、50所在的點(diǎn)是否落在紅色和藍(lán)色重疊的部分?教師引導(dǎo)學(xué)生利用學(xué)過(guò)的驗(yàn)證法進(jìn)行驗(yàn)證,并得出結(jié)論:兩個(gè)界點(diǎn)沒(méi)有落在紅色和藍(lán)色重疊的部分。
。ㄔO(shè)計(jì)意圖:讓學(xué)生對(duì)一系列的問(wèn)題進(jìn)行自主分析和解答,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。同時(shí)在上述過(guò)程中,利用不同顏色的直觀性,目的`在于能讓學(xué)生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個(gè)部分的解集。
類似地,引導(dǎo)學(xué)生得出結(jié)論:兩個(gè)解集的公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結(jié)論。
形式三:結(jié)合課本,利用兩條橫線都經(jīng)過(guò)的部分來(lái)確定兩個(gè)解集的公共部分。
。ㄔO(shè)計(jì)意圖:介紹不同的形式,讓學(xué)生再一次鮮明、直觀地體會(huì):x的可取值范圍是兩個(gè)不等式解集的公共部分;進(jìn)一步培養(yǎng)學(xué)生的觀察能力和數(shù)形結(jié)合的思想方法。)
6、問(wèn)題4:如何表示這個(gè)可取值范圍?
教師分析:在數(shù)軸上,未知數(shù)x落在實(shí)數(shù)40和50之間。而我們知道,數(shù)軸上的實(shí)數(shù),它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個(gè)數(shù)先按從小到大的順序書寫出來(lái),再用小于號(hào)依次進(jìn)行連接,記為40<x<50。同時(shí)再次強(qiáng)調(diào):40<x<50表示的意義為x>40且x<50。
7、小結(jié)并解決課本問(wèn)題:原不等式組中x的取值范圍為40<x<50。這就是說(shuō),將污水抽完所用時(shí)間多于40min而少于50min。
(設(shè)計(jì)意圖:首尾呼應(yīng),完成了實(shí)際問(wèn)題的研究,通過(guò)這個(gè)研究過(guò)程,讓學(xué)生進(jìn)行感悟、歸納、領(lǐng)會(huì)知識(shí)的真諦。)
8、同時(shí),類比一元一次不等式解集的幾何意義,教師再次進(jìn)行歸納:
在數(shù)軸上,若在40<x<50這部分中任取一個(gè)實(shí)數(shù),它們都滿足不等式組。因此,這部分中的每一個(gè)實(shí)數(shù)都是不等式組的解;而所有的這些解的集合,就是不等式組的解集。也就是說(shuō),剛才我們找到的兩個(gè)不等式的解集的公共部分,就是不等式組的解集。由此,得到不等式組的解集和解不等式組的意義:
一般地,幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。
9、結(jié)合上述學(xué)習(xí)過(guò)程,讓學(xué)生和教師一起歸納解一元一次不等式組的步驟:
(1)分別求出不等式組中各個(gè)不等式的解集;
。2)把這些解集分別在同一條數(shù)軸上表示出來(lái);
。3)確定各個(gè)不等式解集的公共部分;
。4)寫出不等式組的解集。
。ㄔO(shè)計(jì)意圖:及時(shí)進(jìn)行小結(jié),使學(xué)生對(duì)所學(xué)知識(shí)更加的系統(tǒng)化。)
【初中數(shù)學(xué)一元一次不等式組教學(xué)設(shè)計(jì)】相關(guān)文章:
初中數(shù)學(xué)《一元一次方程》單元測(cè)試題07-28
《數(shù)學(xué)廣角》教學(xué)設(shè)計(jì)11-27
七年級(jí)數(shù)學(xué)不等式與不等式組檢測(cè)試題及參考答案07-26
七年級(jí)數(shù)學(xué)不等式與不等組檢測(cè)試題08-02
初中物理《力》教學(xué)設(shè)計(jì)12-07
《一次成功的實(shí)驗(yàn)》教學(xué)設(shè)計(jì)10-30
數(shù)學(xué)《比》教學(xué)設(shè)計(jì)(通用7篇)10-04
一次函數(shù)的圖像教學(xué)設(shè)計(jì)07-05