亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

考研資訊 百文網(wǎng)手機(jī)站

考研數(shù)學(xué)三類行列式計算分析

時間:2022-01-26 15:42:19 考研資訊 我要投稿

考研數(shù)學(xué)三類行列式計算分析

  行列式是線性代數(shù)的重要考察點(diǎn),出題比較靈活,考生需熟練掌握。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)三類行列式計算指南,歡迎大家前來閱讀。

考研數(shù)學(xué)三類行列式計算分析

  考研數(shù)學(xué)三類行列式計算解析

  對于數(shù)值型行列式來說,我們先看低階行列式的計算,對于二階或者三階行列式其是有自己的計算公式的,我們可以直接計算。三階以上的行列式,一般可以運(yùn)用行列式按行或者按列展開定理展開為低階行列式再進(jìn)行計算,對于較復(fù)雜的三階行列式也可以考慮先進(jìn)行展開。在運(yùn)用展開定理時,一般需要先利用行列式的性質(zhì)將行列式化為某行或者某列只有一個非零元的形式,再進(jìn)行展開。特殊低階行列式可以直接利用行列式的性質(zhì)進(jìn)行求解。

  對于高階行列式的計算,我們的基本思路有兩個:一是利用行列式的性質(zhì)進(jìn)行三角化,也就是將行列式化為上三角或者下三角行列式來計算;二是運(yùn)用按行或者按列直接展開,其中運(yùn)用展開定理的行列式一般要求有某行或者某列僅有一個或者兩個非零元,如果展開之后仍然沒有降低計算難度,則可以觀察是否能得到遞推公式,再進(jìn)行計算。其中在高階行列式中我是用加邊法把其最終化為上(下)三角,或者就直接按行或者列直接展開了,展開后有的時候就直接是上或者下三角形行列式了,但有時其還不是上下三階,可能就要用到遞推的類型來處理此類題目了?傊,我們對于高階行列式要求不是很高,只要掌握幾種常見的情形的計算方法就可以了。

  有的時候,對于那些比較特殊的形式,比如范德蒙行列式的類型,我們就直接把它湊成此類行列式,然后利用范德蒙行列式的計算公式就可以了,但是,我們一定要把范德蒙行列式的形式,一階其計算方法給它掌握住,我們在上課時也給同學(xué)們講解了其記憶的方面,希望同學(xué)們課下多多做些練習(xí)題進(jìn)行鞏固。

  當(dāng)然對于行列式我們有時可能還會用到克萊默法則和拉普拉斯展開來計算,只是這些都是些特殊的行列式的計算,其有一定的局限性,比如1995年數(shù)三就考到了一題用克萊默法則來處理的填空題。

  對于抽象型行列式來說,其計算方法就有可能是與后面的知識相結(jié)合來處理的。關(guān)于抽象型行列式的計算:(1)利用行列式的性質(zhì)來計算,這里主要是運(yùn)用單行(列)可拆性來計算的,這種大多是把行列式用向量來表示的,然后利用單行或者列可拆性,把它拆開成多個行列式,然后逐個計算,這時一部分行列式可能就會出現(xiàn)兩行或者列元素相同或者成比例了,這樣簡化后便可求出題目中要求的行列式。(2)利用矩陣的性質(zhì)及運(yùn)算來計算,這類題,主要是用兩個矩陣相乘的行列式等于兩個矩陣分別取行列式相乘,這里當(dāng)然要求必須是方陣才行。這類題目的解題思路就是利用已知條件中的式子化和差為乘積的形式,進(jìn)而兩邊再取行列式,便可得到所求行列式。之前很多年考研中都出現(xiàn)過此類填空或者選擇題。因此,此類題型同學(xué)們務(wù)必要掌握住其解題思路和方法,多做練習(xí)加以鞏固。

  (3)利用單位矩陣的來求行列式,這類題目難度比前面題型要大,對矩陣的相關(guān)性質(zhì)和結(jié)論要求比較高。早在1995年數(shù)一的考研試卷中出現(xiàn)過一題6分的解答題,這題就是要利用A乘以A的轉(zhuǎn)置等于單位矩陣E這個條件來代換的,把要求的式子中的單位矩陣換成這個已知條件來處理的。

  (4)利用矩陣特征值來求行列式,這類題在考研中出現(xiàn)過很多次,利用矩陣的特征值與其行列式的關(guān)系來求行列式,即行列式等于矩陣特征值之積,這種方法要求同學(xué)們一定要掌握住,課下要多做些練習(xí)加以鞏固。

  考研高數(shù)中值定理證明的幾種方法

  中值定理包括費(fèi)馬引理、羅爾定理、拉格朗日定理、格西中值定理、泰勒中值定理,這四個定理之間的聯(lián)和區(qū)別要弄清楚,羅爾定理是拉格朗日中值定理的特殊情況。除泰勒定理外的三個定理都要求已知函數(shù)在某個閉區(qū)間上連續(xù),對應(yīng)開區(qū)間內(nèi)可導(dǎo)?挛髦兄刀ɡ砩婕暗絻蓚函數(shù),在分母上的那個函數(shù)的一階導(dǎo)在定義域上要求不為零,柯西中值定理還有一個重要應(yīng)用——洛必達(dá)法則,在求極限時會經(jīng)常用到。而且同學(xué)們需要掌握的不單單是這五個中值定理,而且關(guān)于他們本身的證明也是需要重點(diǎn)掌握的,尤其是費(fèi)馬引理、羅爾定理、拉格朗日定理、格西定理的證明過程,這個過程在教科書上都有證明的過程,同學(xué)們需要自己把這個都完全能夠掌握,不僅僅是因?yàn)樵?9年的真題考查過這個的證明,而是這幾個的證明思想是之后類似題目證明反復(fù)使用的。而閉區(qū)間上的'連續(xù)定理主要是指的最值定理、介值定理、零點(diǎn)存在定理。

  一般來講閉區(qū)間上連續(xù)的定理是直接用的,也就是用來直接證明一些類似與存在一點(diǎn)在某個區(qū)間內(nèi)使得某個函數(shù)是等于零的。而中值定理的應(yīng)用一般是需要通過構(gòu)造函數(shù)的,一般來講都是三步走,第一步去構(gòu)造函數(shù),合理的去構(gòu)造函數(shù)是能夠做出這個證明題目最最關(guān)鍵的一步,而構(gòu)造函數(shù)的方法一般是通過對要求的那個等式積分得到,同時也要注意兩遍同時乘以一個函數(shù),比如同時乘以ex,因?yàn)檫@個函數(shù)積分是不變的,所以會有這個。構(gòu)造完成后就是第二步去檢驗(yàn)條件,看是用那個定理,一般來講,如果是求一階的導(dǎo)數(shù)等于0優(yōu)先想到的就是羅爾定理,如果是讓你求高階的一個式子等于零或者等于某個式子,那么優(yōu)先想到的就是泰勒公式了,因?yàn)樯厦娴奈鍌中值定理中,只有泰勒公式是會涉及到高階的,其他的幾個都是一階,如果知道的是一階,最多也是求解二階的。第三步就是求導(dǎo)驗(yàn)證自己求出來的是否是要求證明的結(jié)果。

  考研數(shù)學(xué)歷年考的最多的7個知識點(diǎn)

  1、兩個重要極限,未定式的極限、等價無窮小代換

  這些小的知識點(diǎn)在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達(dá)法則加等價無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。

  2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系

  要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點(diǎn)。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟(jì)類的一些試題進(jìn)行考察。

  3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程

  對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。

  對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當(dāng)然,這一塊對于數(shù)三的同學(xué)來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點(diǎn),而且提醒大家一下,學(xué)習(xí)的時候要注意,差分方程的解題方式和微方程是相似的,學(xué)習(xí)的時候要注意這一點(diǎn)。

  4、級數(shù)問題,主要針對數(shù)一和數(shù)三

  這部分的重點(diǎn)是:一、常數(shù)項(xiàng)級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進(jìn)行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項(xiàng)級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當(dāng)?shù)膬缂墧?shù)來進(jìn)行求和。

  5、一維隨機(jī)變量函數(shù)的分布

  這個要重點(diǎn)掌握連續(xù)性變量的這一塊。這里面有個難點(diǎn),一維隨機(jī)變量函數(shù)這是一個難點(diǎn),求一元隨機(jī)變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。

  6、隨機(jī)變量的數(shù)字特征

  要記住一維隨機(jī)變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨(dú)性考察,往往和前面的一維隨機(jī)變量函數(shù)和多維隨機(jī)變量函數(shù)和第六章的數(shù)理統(tǒng)計結(jié)合進(jìn)行考察。特別針對數(shù)一的同學(xué)來說,考察矩估計和最大似然估計的時候會考察無偏性。

  7、參數(shù)估計

  這一點(diǎn)是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點(diǎn),一個是矩估計,一個是最大似然估計,這兩個集中出大題。

【考研數(shù)學(xué)三類行列式計算分析】相關(guān)文章:

考研數(shù)學(xué)線性代數(shù)行列式的計算方法01-26

考研線性代數(shù)如何復(fù)習(xí)行列式的計算12-18

考研數(shù)學(xué)行列式復(fù)習(xí)重點(diǎn)及解題方法12-18

考研計算機(jī)專業(yè)就業(yè)前景分析08-20

考研數(shù)學(xué)概率統(tǒng)計試題的分析12-21

考研數(shù)學(xué)應(yīng)試技巧的全面分析12-20

考研數(shù)學(xué)概率與統(tǒng)計大綱分析12-06

考研數(shù)學(xué)拿高分的策略分析12-18

考研數(shù)學(xué)性質(zhì)與特點(diǎn)全面分析12-12

計算機(jī)考研復(fù)習(xí)的思路分析12-15