亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學 百文網(wǎng)手機站

數(shù)學高中知識點總結(jié)

時間:2022-07-21 09:56:26 數(shù)學 我要投稿

數(shù)學高中知識點總結(jié)

  在日常過程學習中,看到知識點,都是先收藏再說吧!知識點也可以通俗的理解為重要的內(nèi)容。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?以下是小編幫大家整理的數(shù)學高中知識點總結(jié),僅供參考,大家一起來看看吧。

數(shù)學高中知識點總結(jié)

  數(shù)學高中知識點總結(jié) 篇1

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  2、若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  數(shù)學高中知識點總結(jié) 篇2

  1、求函數(shù)的單調(diào)性:

  利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

 。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

 。4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導數(shù)在實際生活中的應用:

  實際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點唯一的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

  數(shù)學高中知識點總結(jié) 篇3

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面。

  按是否共面可分為兩類:

 。1)共面:平行、相交

 。2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法。

  若從有無公共點的角度看可分為兩類:

 。1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

  ①直線在平面內(nèi)——有無數(shù)個公共點

 、谥本和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。

  由此得直線和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  數(shù)學高中知識點總結(jié) 篇4

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>

 、谠O點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關(guān)系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

  數(shù)學高中知識點總結(jié) 篇5

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關(guān)系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的'一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  數(shù)學高中知識點總結(jié) 篇6

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點

  判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個平面過另一個平面的垂線,則這兩個平面垂直

  性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

  數(shù)學高中知識點總結(jié) 篇7

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

  6、指數(shù)概念的擴充;

  7、有理指數(shù)冪的運算;

  8、指數(shù)函數(shù);

  9、對數(shù);

  10、對數(shù)的運算性質(zhì);

  11、對數(shù)函數(shù)。

  12、函數(shù)的應用舉例。

  三、數(shù)列(12課時,5個)

  1、數(shù)列;

  2、等差數(shù)列及其通項公式;

  3、等差數(shù)列前n項和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關(guān)系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數(shù)與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數(shù)量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質(zhì);

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質(zhì);

  5、直線和平面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關(guān)系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內(nèi)的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數(shù)原理與分步計數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個性質(zhì);

  7、二項式定理;

  8、二項展開式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發(fā)生的概率;

  4、相互獨立事件同時發(fā)生的概率;

  5、獨立重復試驗。

  必修一函數(shù)重點知識整理

  1、函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(—x);

 。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

 。3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復合函數(shù)的有關(guān)問題

 。1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

 。2)復合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對稱性)

 。1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

 。2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

 。5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

 。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對稱;

  4、函數(shù)的周期性

 。1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

 。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

 。4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

 。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

 。6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

 。2)l og a N=(a>0,a≠1,b>0,b≠1);

 。3)l og a b的符號由口訣“同正異負”記憶;

 。4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時,抓住兩點:

 。1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對于反函數(shù),應掌握以下一些結(jié)論:

 。1)定義域上的單調(diào)函數(shù)必有反函數(shù);

 。2)奇函數(shù)的反函數(shù)也是奇函數(shù);

 。3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

 。4)周期函數(shù)不存在反函數(shù);

 。5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

 。6)y=f(x)與y=f—1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:

 。1)分離參數(shù)法;

 。2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

  數(shù)學高中知識點總結(jié) 篇8

  1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

  K=-A/B,b=-C/B

  A1/A2=B1/B2≠C1/C2←→兩直線平行

  A1/A2=B1/B2=C1/C2←→兩直線重合

  橫截距a=-C/A

  縱截距b=-C/B

  2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

  表示斜率為k,且過(x0,y0)的直線

  3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

  表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

  4:斜截式:y=kx+b適用于不垂直于x軸的直線

  表示斜率為k且y軸截距為b的直線

  5:兩點式:適用于不垂直于x軸、y軸的直線

  表示過(x1,y1)和(x2,y2)的直線

  (y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

  6:交點式:f1(x,y)m+f2(x,y)=0適用于任何直線

  表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

  7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

  表示過點(x0,y0)且與直線f(x,y)=0平行的直線

  8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標軸的直線

  過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

  9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

  表示過點(x0,y0)且方向向量為(u,v)的直線

  10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

  表示過點(x0,y0)且與向量(a,b)垂直的直線

  11:點到直線距離

  點P(x0,y0)到直線Ι:Ax+By+C=0的距離

  d=|Ax0+By0+C|/√A2+B2

  兩平行線之間距離

  若兩平行直線的方程分別為:

  Ax+By+C1=OAx+By+C2=0則

  這兩條平行直線間的距離d為:

  d=丨C1-C2丨/√(A2+B2)

  12:各種不同形式的直線方程的局限性:

  (1)點斜式和斜截式都不能表示斜率不存在的直線;

  (2)兩點式不能表示與坐標軸平行的直線;

  (3)截距式不能表示與坐標軸平行或過原點的直線;

  (4)直線方程的一般式中系數(shù)A、B不能同時為零.

  13:位置關(guān)系

  若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

  1.當A1B2-A2B1≠0時,相交

  2.A1/A2=B1/B2≠C1/C2,平行

  3.A1/A2=B1/B2=C1/C2,重合

  4.A1A2+B1B2=0,垂直

  數(shù)學高中知識點總結(jié) 篇9

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。

  3、a—邊長,S=6a2,V=a3。

  4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc。

  5、棱柱S—h—高V=Sh。

  6、棱錐S—h—高V=Sh/3。

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。

  9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h。

  10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。

  11、r—底半徑h—高V=πr^2h/3。

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。

  15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。

  數(shù)學高中知識點總結(jié) 篇10

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1)元素的確定性;

  2)元素的互異性;

  3)元素的無序性。

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

 。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

 。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

 。4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

  2)集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類:

  1)有限集含有有限個元素的集合。

  2)無限集含有無限個元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合間的基本關(guān)系

  1、“包含”關(guān)系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

  2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設A={x|x2—1=0}B={—11}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。

 、偃魏我粋集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄BBC那么AC

 、苋绻鸄B同時BA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ。

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集與補集

 。1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

  數(shù)學高中知識點總結(jié) 篇11

  1、課程內(nèi)容:

  必修課程由5個模塊組成:

  必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上是每一個高中學生所必須學習的。

  上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應用,而不在技巧與難度上做過高的要求。

  此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。

  2、重難點及考點:

  重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導數(shù)

  難點:函數(shù)、圓錐曲線

  高考相關(guān)考點:

 、偶吓c簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

 、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應用

 、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應用

 、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應用

 、善矫嫦蛄浚河嘘P(guān)概念與初等運算、坐標運算、數(shù)量積及其應用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

 、酥本和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

 、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應用

 、椭本、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

 、闻帕、組合和概率:排列、組合應用題、二項式定理及其應用

  ⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

 、袑(shù):導數(shù)的概念、求導、導數(shù)的應用

 、褟蛿(shù):復數(shù)的概念與運算

  數(shù)學高中知識點總結(jié) 篇12

  (1)不等關(guān)系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。

 。2)一元二次不等式

  ①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

 。3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

 。4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過程。

 、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。

  數(shù)學高中知識點總結(jié) 篇13

  有界性

  設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界.

  單調(diào)性

  設函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  奇偶性

  設為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

  幾何上,一個奇函數(shù)關(guān)于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變.

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

  設f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

  幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變.

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

  偶函數(shù)不可能是個雙射映射.

  連續(xù)性

  在數(shù)學中,連續(xù)是函數(shù)的一種屬性.直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù).如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性).

  數(shù)學高中知識點總結(jié) 篇14

  1.等比數(shù)列的有關(guān)概念

  (1)定義:

  如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數(shù)).

  (2)等比中項:

  如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.

  2.等比數(shù)列的有關(guān)公式

  通項公式:an=a1qn-1.

  3.等比數(shù)列{an}的常用性質(zhì)

  (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

  4.等比數(shù)列的特征

  (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的',公比q也是非零常數(shù).

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

  5.等比數(shù)列的前n項和Sn

  (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

  (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

  數(shù)學高中知識點總結(jié) 篇15

  1.等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關(guān)系:

  注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的公式為

  Sn=na1

  3.等比數(shù)列前n項和與通項的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  數(shù)學高中知識點總結(jié) 篇16

  等比數(shù)列:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

  1:等比數(shù)列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

 、佼攓≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

 、诋攓=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質(zhì):

 、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

  ②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.

  例題:設ak,al,am,an是等比數(shù)列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設等比數(shù)列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數(shù)列的一個重要性質(zhì),它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

  數(shù)學高中知識點總結(jié) 篇17

  考點一、映射的概念

  1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個非空集合,如果按照某種對應關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應.包括:一對一多對一

  考點二、函數(shù)的概念

  1.函數(shù):設A和B是兩個非空的數(shù)集,如果按照某種確定的對應關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

  2.函數(shù)的三要素:定義域、值域、對應關(guān)系,這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù)。

  3.區(qū)間的概念:設a,bR,且a

  ①(a,b)={xa

 、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的對應法則的函數(shù).注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  考點四、求定義域的幾種情況

 、偃鬴(x)是整式,則函數(shù)的定義域是實數(shù)集R;

 、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;

 、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

  ④若f(x)是對數(shù)函數(shù),真數(shù)應大于零。

 、.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零。

 、奕鬴(x)是由幾個部分的數(shù)學式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

  ⑦若f(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應符合實際問題。

【數(shù)學高中知識點總結(jié)】相關(guān)文章:

數(shù)學高中必修二知識點總結(jié)10-18

高中數(shù)學復數(shù)知識點總結(jié)11-29

高中數(shù)學必考知識點總結(jié)04-23

高中必修二數(shù)學知識點總結(jié)04-23

高中概率數(shù)學知識點11-18

高中數(shù)學必修二知識點總結(jié)11-26

【推薦】高中數(shù)學必修知識點總結(jié)11-26

高中數(shù)學知識點歸納總結(jié)03-12

高中數(shù)學重點知識點總結(jié)04-23