亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高二數(shù)學(xué)重點知識點

時間:2022-12-07 16:37:04 數(shù)學(xué) 我要投稿

高二數(shù)學(xué)重點知識點

  在日復(fù)一日的學(xué)習(xí)中,說到知識點,大家是不是都習(xí)慣性的重視?知識點就是掌握某個問題/知識的學(xué)習(xí)要點。還在苦惱沒有知識點總結(jié)嗎?以下是小編為大家整理的高二數(shù)學(xué)重點知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

高二數(shù)學(xué)重點知識點

高二數(shù)學(xué)重點知識點1

  1.不等式證明的依據(jù)

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

 、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)

  2.不等式的證明方法

  (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

  用比較法證明不等式的步驟是:作差——變形——判斷符號.

  (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

高二數(shù)學(xué)重點知識點2

  不等式

  一、不等式的基本性質(zhì):

  注意:

 。1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。

 。2)注意課本上的幾個性質(zhì),另外需要特別注意:

 、偃鬭b>0,則,即不等式兩邊同號時,不等式兩邊取倒數(shù),不等號方向要改變。

 、谌绻麑Σ坏仁絻蛇呁瑫r乘以一個代數(shù)式,要注意它的正負(fù)號,如果正負(fù)號未定,要注意分類討論。

  ③圖象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。

 、苤薪橹捣ǎ合劝岩容^的代數(shù)式與“0”比,與“1”比,然后再比較它們的大小

  二、均值不等式:兩個數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  基本應(yīng)用:

 、俜趴s,變形;

  ②求函數(shù)最值:

  注意:

 、僖徽ㄈ嗟;

 、诜e定和最小,和定積。

  常用的方法為:拆、湊、平方;

  三、絕對值不等式:

  注意:上述等號“=”成立的條件;

  四、常用的基本不等式:

  五、證明不等式常用方法:

  (1)比較法:作差比較:

  作差比較的步驟:

 、抛鞑睿簩σ容^大小的兩個數(shù)(或式)作差。

 、谱冃危簩Σ钸M(jìn)行因式分解或配方成幾個數(shù)(或式)的完全平方和。

  ⑶判斷差的符號:結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號。

  注意:若兩個正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。

  (2)綜合法:由因?qū)Ч?/p>

 。3)分析法:執(zhí)果索因;静襟E:要證……只需證……,只需證……

 。4)反證法:正難則反。

 。5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。

  放縮法的方法有:

 、盘砑踊蛏崛ヒ恍╉,

  ⑵將分子或分母放大(或縮。

  ⑶利用基本不等式,

  (6)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。

 。7)構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式;

  直線、平面、簡單幾何體:

  1、學(xué)會三視圖的分析:

  2、斜二測畫法應(yīng)注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

 。2)平行于x軸的線段長不變,平行于y軸的線段長減半。

 。3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

  3、表(側(cè))面積與體積公式:

 、胖w:

 、俦砻娣e:S=S側(cè)+2S底;

 、趥(cè)面積:S側(cè)=;

 、垠w積:V=S底h

  ⑵錐體:

 、俦砻娣e:S=S側(cè)+S底;

 、趥(cè)面積:S側(cè)=;

 、垠w積:V=S底h:

 、桥_體

  ①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

 、惹蝮w:

 、俦砻娣e:S=;

  ②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

 。1)直線與平面平行:

 、倬線平行線面平行;

 、诿婷嫫叫芯面平行。

  (2)平面與平面平行:

 、倬面平行面面平行。

 。3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、求角:(步驟——Ⅰ.找或作角;Ⅱ.求角)

 、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;

  ⑵直線與平面所成的角:直線與射影所成的角

  空間中直線與平面、平面與平面之間的位置關(guān)系

  1、直線與平面有三種位置關(guān)系:

 。1)直線在平面內(nèi)——有無數(shù)個公共點

 。2)直線與平面相交——有且只有一個公共點

 。3)直線在平面平行——沒有公共點

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α

  2.2.直線、平面平行的判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

  簡記為:線線平行,則線面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  空間幾何體的三視圖

  1、定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  2、注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

  ①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  4、柱體、錐體、臺體的表面積與體積

 。1)幾何體的表面積為幾何體各個面的面積的和。

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

 。3)柱體、錐體、臺體的體積公式

  (4)球體的表面積和體積公式:V=;S=

  5、空間點、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:

  公理2的作用:

  ①它是判定兩個平面相交的方法。

  ②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線公共點。

 、鬯梢耘袛帱c在直線上,即證若干個點共線的重要依據(jù)。

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:

 、偎强臻g內(nèi)確定平面的依據(jù)

  ②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

 、诋惷嬷本性質(zhì):既不平行,又不相交。

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

  ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

  直線與圓:

  1、直線的傾斜角的范圍是

  在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

  過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2—y1)/(x2—x1),另外切線的斜率用求導(dǎo)的方法。

  3、直線方程:

 、劈c斜式:直線過點斜率為,則直線方程為,

  ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

  4、直線與直線的位置關(guān)系:

  (1)平行A1/A2=B1/B2注意檢驗

 。2)垂直A1A2+B1B2=0

  5、點到直線的距離公式;

  兩條平行線與的距離是

  6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:

  注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

  8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題。①相離②相切③相交

  9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

高二數(shù)學(xué)重點知識點3

  1若等差數(shù)列{an}的前n項和為Sn,且a2+a3=6,則S4的值為()

  A.12B.11C.10D.9

  2設(shè)等差數(shù)列?an?的前n項和為Sn,若a1??11,a4?a6??6,則當(dāng)Sn取最小值時,n等于()

  A.6B.7C.8D.9

  3記等差數(shù)列的前n項和為Sn,若S2?4,S4?20,則該數(shù)列的公差d?()

  A、2B、3C、6D、7

  4等差數(shù)列{an}中,a3?a4?a5?84,a9?73.

  求數(shù)列{an}的通項公式及Sn

高二數(shù)學(xué)重點知識點4

  1.定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。

  2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時,可對命題進(jìn)行等價裝換,例如改用其逆否命題進(jìn)行判斷。

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  若A?B,則p是q的充分條件。

  若A?B,則p是q的必要條件。

  若A=B,則p是q的充要條件。

  若A?B,且B?A,則p是q的既不充分也不必要條件。

高二數(shù)學(xué)重點知識點5

  1.數(shù)列的有關(guān)概念:

  (1)數(shù)列:按照一定次序排列的'一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。

  (2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。

  (3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。

  如:

  2.數(shù)列的表示方法:

  (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

  (3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

  3.數(shù)列的分類:

  4.數(shù)列{an}及前n項和之間的關(guān)系:

  5.等差數(shù)列與等比數(shù)列對比小結(jié):

  等差數(shù)列等比數(shù)列

  一、定義

  二、公式1.

  2.

  1.

  2.

  三、性質(zhì)1.,

  稱為與的等差中項

  2.若(、、、),則

  3.,,成等差數(shù)列

  1.,

  稱為與的等比中項

  2.若(、、、),則

  3.,,成等比數(shù)列

  (三)不等式

  1、;;.

  2、不等式的性質(zhì):①;②;③;

 、埽;⑤;

 、;⑦;

  ⑧.

  小結(jié):代數(shù)式的大小比較或證明通常用作差比較法:作差、化積(商)、判斷、結(jié)論。

  在字母比較的選擇或填空題中,常采用特值法驗證。

  3、一元二次不等式解法:

  (1)化成標(biāo)準(zhǔn)式:;(2)求出對應(yīng)的一元二次方程的根;

  (3)畫出對應(yīng)的二次函數(shù)的圖象;(4)根據(jù)不等號方向取出相應(yīng)的解集。

高二數(shù)學(xué)重點知識點6

  解三角形

  1、三角形三角關(guān)系:A+B+C=180°;C=180°-(A+B);

  2、三角形三邊關(guān)系:a+b>c; a-b3、三角形中的基本關(guān)系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222

  4、正弦定理:在???C中,a、b、c分別為角?、?、C的對邊,R為???C的外abc???2R.接圓的半徑,則有sin?sin?sinCsin

  5、正弦定理的變形公式:

  ①化角為邊:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R

  a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化邊為角:sin??6、兩類正弦定理解三角形的問題:

  ①已知兩角和任意一邊,求其他的兩邊及一角.

  ②已知兩角和其中一邊的對角,求其他邊角.(對于已知兩邊和其中一邊所對的角的題型要注意解的情況(一解、兩解、三解))

  7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

  b2?c2?a2a2?c2?b2a2?b2?c2

  8、余弦定理的推論:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解決的問題:1.已知兩邊和夾角,求其余的量。2.已知三邊求角)

  9、余弦定理主要解決的問題:①已知兩邊和夾角,求其余的量。②已知三邊求角)

  10、如何判斷三角形的形狀:判定三角形形狀時,可利用正余弦定理實現(xiàn)邊角轉(zhuǎn)化,統(tǒng)一成邊的形式或角的形式設(shè)a、b、c是???C的角?、?、C的對邊,則:

 、偃鬭?b?c,則C?90;②若a?b?c,則C?90;

 、廴鬭?b?c,則C?90.

高二數(shù)學(xué)重點知識點7

  一、隨機(jī)事件

  主要掌握好(三四五)

  (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)—B可以表示成A與B的逆的積。

 。2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

  (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。

  二、概率定義

 。1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;

  (3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

  (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

  三、概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

 。2)差:P(A—B)=P(A)—P(AB),特別地,如果B包含于A,則P(A—B)=P(A)—P(B);

 。3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

 。4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一個事件B可以在多種情形(原因)A1,A2,...,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式。

 。5)二項概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨(dú)立)時,要考慮二項概率公式。

高二數(shù)學(xué)重點知識點8

  1.幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

  2.幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長度(面積或體積);

  試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)

  3.幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

  4.幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。

  通過以上對于幾何概型的基本知識點的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機(jī)事件A的概率可以用“事件A包含的基本事件所占的圖形的長度、面積(體積)和角度等”與“試驗的基本事件所占總長度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

高二數(shù)學(xué)重點知識點9

  數(shù)列定義:

  如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

  前n項和公式為:Sn=na1+n(n—1)d/2或Sn=n(a1+an)/2(2)

  以上n均屬于正整數(shù)。

  解釋說明:

  從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0。

  在等差數(shù)列中,等差中項:一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數(shù)列的平均數(shù)。

  且任意兩項am,an的關(guān)系為:an=am+(n—m)d

  它可以看作等差數(shù)列廣義的通項公式。

  推論公式:

  從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}

  若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm—1=(2n—1)an,S2n+1=(2n+1)an+1,Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…或等差數(shù)列,等等。

  基本公式:

  和=(首項+末項)×項數(shù)÷2

  項數(shù)=(末項—首項)÷公差+1

  首項=2和÷項數(shù)—末項

  末項=2和÷項數(shù)—首項

  末項=首項+(項數(shù)—1)×公差

高二數(shù)學(xué)重點知識點10

 。1)定義:

  對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。

 。2)函數(shù)的零點與相應(yīng)方程的根、函數(shù)的圖象與x軸交點間的關(guān)系:

  方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。

 。3)函數(shù)零點的判定(零點存在性定理):

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

  二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關(guān)系

  三二分法

  對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點近似值的方法叫做二分法。

  1、函數(shù)的零點不是點:

  函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標(biāo),所以函數(shù)的零點是一個數(shù),而不是一個點。在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標(biāo)。

  2、對函數(shù)零點存在的判斷中,必須強(qiáng)調(diào):

 。1)、f(x)在[a,b]上連續(xù);

 。2)、f(a)·f(b)<0;

 。3)、在(a,b)內(nèi)存在零點。

  這是零點存在的一個充分條件,但不必要。

  3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。

  利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0。若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點。

  四判斷函數(shù)零點個數(shù)的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

  2、零點存在性定理法:

  利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。

  3、數(shù)形結(jié)合法:

  轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題。先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。

  已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

  1、直接法:

  直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

  2、分離參數(shù)法:

  先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

  3、數(shù)形結(jié)合法:

  先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

【高二數(shù)學(xué)重點知識點】相關(guān)文章:

高二數(shù)學(xué)重點復(fù)習(xí)知識點歸納5篇07-30

高二物理重點知識點03-05

高考數(shù)學(xué)重點知識點08-24

小升初數(shù)學(xué)的重點知識點11-18

高二數(shù)學(xué)的知識點06-19

高二化學(xué)重點知識點的匯總11-30

高二歷史重點知識點整理01-26

高二政治重點知識點的總結(jié)11-24

小學(xué)數(shù)學(xué)重點知識點梳理07-26

小學(xué)數(shù)學(xué)重點知識點整理04-09