亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2024-08-12 08:40:35 數(shù)學(xué) 我要投稿

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)優(yōu)選[15篇]

  在年少學(xué)習(xí)的日子里,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。想要一份整理好的知識(shí)點(diǎn)嗎?下面是小編收集整理的初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀與收藏。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)優(yōu)選[15篇]

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1

  二元一次方程組

  1、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。

  2、含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的方程組叫做二元一次方程組。

  3、二元一次方程組中兩個(gè)方程的公共解叫做二元一次方程組的解。

  4、代入消元法:把二元一次方程中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再帶入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

  5、加減消元法:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.

  6、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:

  (1)審:通過審題,把實(shí)際問題抽象成數(shù)學(xué)問題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個(gè)未知數(shù);

  (2)找:找出能夠表示題意兩個(gè)相等關(guān)系;

  (3)列:根據(jù)這兩個(gè)相等關(guān)系列出必需的代數(shù)式,從而列出方程組;

  (4)解:解這個(gè)方程組,求出兩個(gè)未知數(shù)的值;

  (5)答:在對(duì)求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫出答案.

  一元一次不等式

  重點(diǎn):不等式的性質(zhì)和一元一次不等式的解法。

  難點(diǎn):一元一次不等式的解法和一元一次不等式解決在現(xiàn)實(shí)情景下的實(shí)際問題。

  知識(shí)點(diǎn)一:不等式的概念

  1.不等式:

  用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.

  要點(diǎn)詮釋:

  (1)不等號(hào)的類型:

 、佟啊佟弊x作“不等于”,它說明兩個(gè)量之間的.關(guān)系是不等的,但不能明確兩個(gè)量誰大誰小;

  (2)要正確用不等式表示兩個(gè)量的不等關(guān)系,就要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語的含義。

  2.不等式的解:

  能使不等式成立的未知數(shù)的值,叫做不等式的解。

  要點(diǎn)詮釋:

  由不等式的解的定義可以知道,當(dāng)對(duì)不等式中的未知數(shù)取一個(gè)數(shù),若該數(shù)使不等式成立,則這個(gè)數(shù)就是不等式的一個(gè)解,我們可以和方程的解進(jìn)行對(duì)比理解,一般地,要判斷一個(gè)數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進(jìn)行判斷。

  3.不等式的解集:

  一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關(guān)系是:解集包括解,所有的解組成了解集。

  要點(diǎn)詮釋:

  不等式的解集必須符合兩個(gè)條件:

  (1)解集中的每一個(gè)數(shù)值都能使不等式成立;

  (2)能夠使不等式成立的所有的數(shù)值都在解集中。

  知識(shí)點(diǎn)二:不等式的基本性質(zhì)

  基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。

  符號(hào)語言表示為:如果,那么。

  基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  符號(hào)語言表示為:如果,并且,那么(或)。

  基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  符號(hào)語言表示為:如果,并且,那么(或)

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)2

  1.同一平面內(nèi),兩直線不平行就相交。

  2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互

  為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對(duì)頂角相等。

  3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其

  中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5.垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。6.垂線段最短;

  7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在

  兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題

  11.平行線的判定。結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):

  1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。

  12.★命題:“如果+題設(shè),那么+結(jié)論!

  三角形和多邊形

  1.三角形內(nèi)角和為180°

  2.構(gòu)成三角形滿足的條件:三角形兩邊之和大于第三邊。

  判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構(gòu)成三角形,否則(a+bc)不能構(gòu)成三角形(即三角形最短的兩邊之和大于最長的邊)

  3.三角形邊的'取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對(duì)值)【重點(diǎn)題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對(duì)應(yīng)有三條底邊,任取其中一組底和高,21三角形同一個(gè)面積公式就有三個(gè)表示方法,任取其中兩個(gè)寫成連等(可兩邊同時(shí)2消去)底高

  2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD

  是斜邊AB

  上的高,則有ACBCCDAB

  A

  CB1D【重點(diǎn)題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關(guān)系(如成比例或相等)

  【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點(diǎn)題目】P695題7.外角:

  【基礎(chǔ)知識(shí)】什么是外角?外角定理及其推論【重點(diǎn)題目】P75例2P765、6、8題8.n邊形的★內(nèi)角和★外角和√對(duì)角線條數(shù)為

  【基礎(chǔ)知識(shí)】正多邊形:各邊相等,各角相等;正n邊形每個(gè)內(nèi)角的度數(shù)為【重點(diǎn)題目】P83、P84練習(xí)1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個(gè)拼接點(diǎn),各圖形組成一個(gè)周角(不重疊,無空隙)。

  單一正多邊形的鑲嵌:鑲嵌圖形的每個(gè)內(nèi)角能被360整除:只有6個(gè)等邊三角形(60),4個(gè)正方形(90),3個(gè)正六邊形(120)三種

 。▋煞N正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個(gè)內(nèi)角度數(shù)為的正多邊形與

  0000m個(gè)內(nèi)角度數(shù)為的正多邊形圍繞一個(gè)拼接點(diǎn)組成一個(gè)周角,即混合鑲嵌。

  【例】用正三角形與正方形鋪滿地面,設(shè)在一個(gè)頂點(diǎn)周圍有m個(gè)正三角形、n個(gè)正方形,則m,n的值分別為多少?

  平面直角坐標(biāo)系

  ▲基本要求:在平面直角坐標(biāo)系中1.給出一點(diǎn),能夠?qū)懗鲈擖c(diǎn)坐標(biāo)2.給出坐標(biāo),能夠找到該點(diǎn)

  ▲建系原則:原點(diǎn)、正方向、橫縱軸名稱(即x、y)

  √語言描述:以…(哪一點(diǎn))為原點(diǎn),以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標(biāo)系

  ▲基本概念:有順序的兩個(gè)數(shù)組成的數(shù)對(duì)稱為(有序數(shù)對(duì))【三大規(guī)律】1.平移規(guī)律★

  點(diǎn)的平移規(guī)律(P51歸納)

  例將P(2,3)向左平移3個(gè)單位,向上平移5個(gè)單位得到點(diǎn)Q,則Q點(diǎn)的坐標(biāo)為圖形的平移規(guī)律(P52歸納)

  重點(diǎn)題目:P53練習(xí);P543、4題;P557題。2.對(duì)稱規(guī)律▲

  關(guān)于x軸對(duì)稱,縱坐標(biāo)取相反數(shù)關(guān)于y軸對(duì)稱,橫坐標(biāo)取相反數(shù)

  關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)同時(shí)取相反數(shù)

  例:P點(diǎn)的坐標(biāo)為(5,7),則P點(diǎn)

 。1.)關(guān)于x軸對(duì)稱的點(diǎn)為(2.)關(guān)于y軸的對(duì)稱點(diǎn)為(3.)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為3.位置規(guī)律★

  假設(shè)在平面直角坐標(biāo)系上有一點(diǎn)P(a,b)y1.如果P點(diǎn)在第一象限,有a>0,b>0(橫、縱坐標(biāo)都大于0)第二象限第一象限2.如果P點(diǎn)在第二象限,有a0(橫坐標(biāo)小于0,縱坐標(biāo)大于0)X3.如果P點(diǎn)在第三象限,有a5.小長方形的面積表示頻數(shù)。縱軸為頻數(shù)。等距分組時(shí),通常直接用小長方形的高表示頻數(shù),即縱

  組距軸為“頻數(shù)”

  6.頻數(shù)分布折線圖√根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:①取每個(gè)小長方形的上邊的中點(diǎn),以及x

  軸上與最左、最右直方相距半個(gè)組距的點(diǎn)。②連線【重點(diǎn)題目】P1693、4題

  二元一次方程組和不等式、不等式組

  1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個(gè)二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分)

  3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實(shí)際問題。關(guān)鍵:找等量關(guān)系常見的類型有:分配問題P1185題;P1084、5題;P102練習(xí)3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習(xí)2;P1082題;藥物配制P1087題;行程問題P99練習(xí)4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(zhì)(重點(diǎn)是性質(zhì)三)P1285、7題6.利用不等式的性質(zhì)解不等式,并把解集在數(shù)軸上表示出來(課本上的練例、習(xí)題)P1342

  步驟:去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因?yàn)橐诓坏仁絻啥送瑫r(shí)乘或除以某一個(gè)數(shù),要考慮不等號(hào)的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習(xí)2;P123練習(xí)28.利用數(shù)軸或口訣解不等式組(課本上的例、習(xí)題)

  數(shù)軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小。ㄓ冢┐笕≈虚g,大(于)大。ㄓ冢┬,解不見了。

  9.列不等式(組)解決實(shí)際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習(xí)2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補(bǔ)充完整:不等式組

  4

  在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取。粁>ax<b空集大大小小不見了。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)3

  一、目標(biāo)與要求

  1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  二、知識(shí)框架

  三、重點(diǎn)

  理解并掌握不等式的性質(zhì);

  正確運(yùn)用不等式的性質(zhì);

  建立方程解決實(shí)際問題,會(huì)解"ax+b=cx+d"類型的一元一次方程;

  尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;

  一元一次不等式組的解集和解法。

  四、難點(diǎn)

  一元一次不等式組解集的理解;

  弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  五、知識(shí)點(diǎn)、概念總結(jié)

  1、不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2、不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的`不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3、不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5、不等式解集的表示方法:

 。1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡單的不等式表達(dá)出來,例如:x—1≤2的解集是x≤3

 。2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6、解不等式可遵循的一些同解原理

 。1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

 。2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)

  (3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

  7、不等式的性質(zhì):

 。1)如果x>y,那么yy;(對(duì)稱性)

  (2)如果x>y,y>z;那么x>z;(傳遞性)

  (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)

 。4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

 。5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

 。6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

 。7)如果x>y>0,m>n>0,那么xm>yn

 。8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9、解一元一次不等式的一般順序:

  (1)去分母 (運(yùn)用不等式性質(zhì)2、3)

  (2)去括號(hào)

  (3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)

 。4)合并同類項(xiàng)

 。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)

 。6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10、 一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡不等式求解。

  11、一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成

  了一個(gè)一元一次不等式組。

  12、解一元一次不等式組的步驟:

 。1) 求出每個(gè)不等式的解集;

 。2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  13、解不等式的訣竅

 。1)大于大于取大的(大大大);

  例如:X>—1,X>2 ,不等式組的解集是X>2

 。2)小于小于取小的(小小小);

  例如:X<—4,X<—6,不等式組的解集是X<—6

 。3)大于小于交叉取中間;

 。4)無公共部分分開無解了;

  14、解不等式組的口訣

 。1)同大取大

  例如,x>2,x>3 ,不等式組的解集是X>3

 。2)同小取小

  例如,x<2,x<3 ,不等式組的解集是X<2

 。3)大小小大中間找

  例如,x<2,x>1,不等式組的解集是1

 。4)大大小小不用找

  例如,x<2,x>3,不等式組無解

  15、應(yīng)用不等式組解決實(shí)際問題的步驟

  (1)審清題意

 。2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

  (3)解不等式組

 。4)由不等式組的解確立實(shí)際問題的解

  (5)作答

  16、用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)4

  第一章整式的運(yùn)算

  一、單項(xiàng)式、單項(xiàng)式的次數(shù):

  只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。

  二、多項(xiàng)式

  1、多項(xiàng)式、多項(xiàng)式的次數(shù)、項(xiàng)

  幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  三、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  四、整式的加減法:

  整式加減法的一般步驟:(1)去括號(hào);(2)合并同類項(xiàng)。五、冪的運(yùn)算性質(zhì):1、同底數(shù)冪的乘法:a

  2、冪的乘方:3、積的乘方:

  4、同底數(shù)冪的除法:

  六、零指數(shù)冪和負(fù)整數(shù)指數(shù)冪:1、零指數(shù)冪:2、負(fù)整數(shù)指數(shù)冪:

  七、整式的乘除法:

  1、單項(xiàng)式乘以單項(xiàng)式:

  法則:單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。

  2、單項(xiàng)式乘以多項(xiàng)式:

  法則:單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  3、多項(xiàng)式乘以多項(xiàng)式:

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  4、單項(xiàng)式除以單項(xiàng)式:

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個(gè)因式。

  5、多項(xiàng)式除以單項(xiàng)式:

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:2、完全平方公式:

  第二章平行線與相交線

  一、余角和補(bǔ)角:

  1、余角:

  定義:如果兩個(gè)角的和是直角,那么稱這兩個(gè)角互為余角。性質(zhì):同角或等角的余角相等。2、補(bǔ)角:

  定義:如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角。

  性質(zhì):同角或等角的補(bǔ)角相等。

  二、對(duì)頂角:

  我們把兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且角的兩邊互為反向延長線的兩個(gè)角叫做對(duì)頂角。

  對(duì)頂角的性質(zhì):對(duì)頂角相等。

  三、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構(gòu)成八個(gè)角。其中∠1與∠5這兩個(gè)角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置相同的一對(duì)角叫做同位角;∠3與∠5這兩個(gè)角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個(gè)角叫做內(nèi)錯(cuò)角;∠3與∠6在直線AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個(gè)角叫做同旁內(nèi)角。

  四、平行線的判定:

  1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。

  2、兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。簡稱:內(nèi)錯(cuò)角相等,兩直線平行。

  3、兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。簡稱:同旁內(nèi)角互補(bǔ),兩直線平行。

  補(bǔ)充平行線的判定方法:

  (1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。

  五、平行線的性質(zhì):

 。1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯(cuò)角相等。(3)兩直線平行,同旁內(nèi)角互補(bǔ)。

  六、尺規(guī)作圖:

  1、作一條線段等于已知線段。2、作一個(gè)角等于已知角。

  第三章生活中的數(shù)據(jù)

  一、科學(xué)記數(shù)法:

  一般地,一個(gè)絕對(duì)值較小的'數(shù)可以表示成a10的形式,其中1a10,n是負(fù)整數(shù)。

  二、近似數(shù)和有效數(shù)字:

  1、近似數(shù):

  利用四舍五入法取一個(gè)數(shù)的近似數(shù)時(shí),四舍五入到哪一位,就說這個(gè)近似數(shù)精確到哪一位。

  2、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個(gè)近似數(shù)的有效數(shù)字。

  三、形象統(tǒng)計(jì)圖:

  第四章概率

  一、事件發(fā)生的可能性;

  人們通常用1(或100)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。

  二、游戲是否公平:

  游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。三、摸到紅球的概率:1、概率的意義

  P(摸到紅球=

  摸到紅球可能出現(xiàn)的結(jié)果數(shù)

  摸出一球可能出現(xiàn)的結(jié)果數(shù)2、確定事件和不確定事件的概率:

 。1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0

  (2)三角形按角分類:

  直角三角形(有一個(gè)角為直角的三角形)

  三角形銳角三角形(三個(gè)角都是銳角的三角形)斜三角形

  鈍角三角形(有一個(gè)角為鈍角的三角形)

  把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

  7、三角形的三種重要線段:(1)三角形的角平分線:

  定義:在三角形中,一個(gè)內(nèi)角的平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。

  性質(zhì):三角形的三條角平分線交于一點(diǎn)。交點(diǎn)在三角形的內(nèi)部。(2)三角形的中線:

  定義:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做三角形的中線。性質(zhì):三角形的三條中線交于一點(diǎn),交點(diǎn)在三角形的內(nèi)部。(3)三角形的高線:

  定義:從三角形一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

  性質(zhì):三角形的三條高所在的直線交于一點(diǎn)。銳角三角形的三條高線的交點(diǎn)在它的內(nèi)部;直角三角形的三條高線的交點(diǎn)是它的斜邊的中點(diǎn);鈍角三角形的三條高所在的直線的交點(diǎn)在它的外部;

  8、三角形的面積:

  三角形的面積=

  1×底×高2二、全等圖形:

  定義:能夠完全重合的兩個(gè)圖形叫做全等圖形。性質(zhì):全等圖形的形狀和大小都相同。三、全等三角形

  1、全等三角形及有關(guān)概念:

  能夠完全重合的兩個(gè)三角形叫做全等三角形。兩個(gè)三角形全等時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。

  2、全等三角形的表示:

  全等用符號(hào)“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個(gè)全等三角形時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。3、全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。4、三角形全等的判定:

 。1)邊邊邊:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊邊邊”或“SSS”)。

 。2)角邊角:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“角邊角”或“ASA”)(3)角角邊:兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“角角邊”或“AAS”)(4)邊角邊:兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊角邊”或“SAS”)直角三角形全等的判定:

  對(duì)于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)

  第六章變量之間的關(guān)系

  1、變量、自變量、因變量:2、函數(shù)的三種表示法:

  (1)關(guān)系式法(2)列表法

 。3)圖像法

  第五章生活中的軸對(duì)稱

  一、軸對(duì)稱

  1、軸對(duì)稱圖形:

  如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

  2、軸對(duì)稱:

  對(duì)于兩個(gè)圖形,如果沿一條直線對(duì)折后,它們能夠完全重合,那么稱這兩個(gè)圖形成軸對(duì)稱,這條直線就是對(duì)稱軸。

  3、性質(zhì):

  (1)對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分

 。2)對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等。

  二、角平分線的性質(zhì):

  角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。

  三、線段的垂直平分線(簡稱中垂線):

  定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質(zhì):線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。四、等腰三角形

  1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。

  2、等腰三角形的性質(zhì):

  (1)等腰三角形的兩個(gè)底角相等

 。2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),

 。3)等腰三角形是軸對(duì)稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對(duì)稱軸。

  3、等腰三角形的判定:

 。1)有兩條邊相等的三角形是等腰三角形。

 。2)如果一個(gè)三角形有兩個(gè)角相等,那么它們所對(duì)的邊也相等五、等邊三角形:

  1、等邊三角形:三邊都相等的三角形叫做等邊三角形。2、等邊三角形的性質(zhì):

 。1)具有等腰三角形的所有性質(zhì)。

  (2)等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。

  3、等邊三角形的判定

 。1)三邊都相等的三角形是等邊三角形。

 。2):三個(gè)角都相等的三角形是等邊三角形

 。3):有一個(gè)角是60°的等腰三角形是等邊三角形。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)5

  一、目標(biāo)與要求

  1。感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2。經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3。通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  三、重點(diǎn)

  理解并掌握不等式的性質(zhì);

  正確運(yùn)用不等式的性質(zhì);

  建立方程解決實(shí)際問題,會(huì)解ax+b=cx+d類型的一元一次方程;

  尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;

  一元一次不等式組的解集和解法。

  四、難點(diǎn)

  一元一次不等式組解集的理解;

  弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  五、知識(shí)點(diǎn)、概念總結(jié)

  1。不等式:用符號(hào),,,表示大小關(guān)系的式子叫做不等式。

  2。不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào),連接的.不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào)),連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3。不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4。不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5。不等式解集的表示方法:

 。1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡單的不等式表達(dá)出來,例如:x—12的解集是x3

 。2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6。解不等式可遵循的一些同解原理

 。1)不等式F(x) G(x)與不等式 G(x)F(x)同解。

 。2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)

  (3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。

  7。不等式的性質(zhì):

 。1)如果xy,那么yy;(對(duì)稱性)

 。2)如果xy,y那么x(傳遞性)

 。3)如果xy,而z為任意實(shí)數(shù)或整式,那么x+z(加法則)

 。4)如果xy,z0,那么xz如果xy,z0,那么xz

 。5)如果xy,z0,那么xzy如果xy,z0,那么xz

 。6)如果xy,mn,那么x+my+n(充分不必要條件)

  (7)如果x0,m0,那么xmyn

 。8)如果x0,那么x的n次冪y的n次冪(n為正數(shù))

  8。一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9。解一元一次不等式的一般順序:

 。1)去分母 (運(yùn)用不等式性質(zhì)2、3)

 。2)去括號(hào)

  (3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)

  (4)合并同類項(xiàng)

 。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)

 。6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10。 一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡不等式求解。

  11。一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成

  了一個(gè)一元一次不等式組。

  12。解一元一次不等式組的步驟:

 。1) 求出每個(gè)不等式的解集;

 。2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  13。解不等式的訣竅

  (1)大于大于取大的(大大大);

  例如:X—1,X2 ,不等式組的解集是X2

 。2)小于小于取小的(小小。;

  例如:X—4,X—6,不等式組的解集是X—6

 。3)大于小于交叉取中間;

 。4)無公共部分分開無解了;

  14。解不等式組的口訣

 。1)同大取大

  例如,x2,x3 ,不等式組的解集是X3

 。2)同小取小

  例如,x2,x3 ,不等式組的解集是X2

 。3)大小小大中間找

  例如,x2,x1,不等式組的解集是1

 。4)大大小小不用找

  例如,x2,x3,不等式組無解

  15。應(yīng)用不等式組解決實(shí)際問題的步驟

 。1)審清題意

 。2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

 。3)解不等式組

 。4)由不等式組的解確立實(shí)際問題的解

 。5)作答

  16。用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)6

  一、目標(biāo)與要求

  1.理解對(duì)頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);

  2.掌握對(duì)頂角相等的性質(zhì)和它的推證過程;

  3.通過在圖形中辨認(rèn)對(duì)頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識(shí)圖能力。

  二、重點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  兩條直線互相垂直的概念、性質(zhì)和畫法;

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念與識(shí)別。

  三、難點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  對(duì)點(diǎn)到直線的距離的概念的理解;

  對(duì)平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);

  能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。

  四、知識(shí)框架

  五、知識(shí)點(diǎn)、概念總結(jié)

  1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對(duì)頂角。

  3.對(duì)頂角和鄰補(bǔ)角的'關(guān)系

  4.垂直:兩條直線、兩個(gè)平面相交,或一條直線與一個(gè)平面相交,如果交角成直角,叫做互相垂直。

  5.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點(diǎn)叫做垂足。

  7.垂線性質(zhì)

  (1)在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  (2)連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡單說成:垂線段最短。

  (3)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。

  8.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:1與5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。

  內(nèi)錯(cuò)角:2與6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:2與5像這樣的一對(duì)角叫做同旁內(nèi)角。

  9.平行:在平面上兩條直線、空間的兩個(gè)平面或空間的一條直線與一平面之間沒有任何公共點(diǎn)時(shí),稱它們平行。

  10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  11.命題:判斷一件事情的語句叫命題。

  12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。

  13.假命題:條件和結(jié)果相矛盾的命題是假命題。

  14.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡稱平移。

  15.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

  16.定理與性質(zhì)

  對(duì)頂角的性質(zhì):對(duì)頂角相等。

  17.垂線的性質(zhì):

  性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

  18.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  19.平行線的性質(zhì):

  性質(zhì)1:兩直線平行,同位角相等。

  性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

  性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

  20.平行線的判定:

  判定1:同位角相等,兩直線平行。

  判定2:內(nèi)錯(cuò)角相等,兩直線平行。

  判定3:同旁內(nèi)角相等,兩直線平行。

  21.命題的擴(kuò)展

  三種命題

  (1)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題叫做互逆命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆命題。

  (2)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的條件的否定和結(jié)論的否定,那么這兩個(gè)命題叫做互否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的否命題。

  (3)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆否命題。

  四種命題的相互關(guān)系

  (1)四種命題的相互關(guān)系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。

  (2)四種命題的真假關(guān)系:

  兩個(gè)命題互為逆否命題,它們有相同的真假性。兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系

  命題之間的關(guān)系

  (1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯(cuò)誤的命題叫做假命題。

  (2)若p,則q形式的命題中p叫做命題的條件,q叫做命題的結(jié)論。

  (3)命題的分類:

  A:原命題:一個(gè)命題的本身稱之為原命題,如:若x1,則f(x)=(x-1)2單調(diào)遞增。

  B:逆命題:將原命題的條件和結(jié)論顛倒的新命題,如:若f(x)=(x-1)2單調(diào)遞增,則x1.

  C:否命題:將原命題的條件和結(jié)論全否定的新命題,但不改變條件和結(jié)論的順序,

  如:若x小于1,則f(x)=(x-1)2不單調(diào)遞增。

  D:逆否命題:將原命題的條件和結(jié)論顛倒,然后再將條件和結(jié)論全否定的新命題,

  如:若f(x)=(x-1)2不單調(diào)遞增,則x小于1.

  (4)命題的否定

  命題的否定是只將命題的結(jié)論否定的新命題,這與否命題不同。

  (5)4種命題及命題的否定的真假性關(guān)系

  原命題和逆否命題等價(jià),否命題和逆命題等價(jià),命題的否定與原命題的真假性相反。

  充分條件與必要條件

  (1)若p,則q為真命題,叫做由p推出q,記作p=q,并且說p是q的充分條件,q是p的必要條件。

  (2)若p,則q為假命題,叫做由p推不出q,記作pq,并且說p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。

  充要條件

  如果既有p=q,又有q=p,就記作pq,并且說p是q的充分必要條件(或q是p的充分必要條件),簡稱充要條件。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)7

  相交線與平行線

  1.同一平面內(nèi),兩直線不平行就相交。

  2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對(duì)頂角相等。

  3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。

  4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5.垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。

  6.垂線段最短;

  7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的'長度。

  8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。

  9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題

  11.平行線的判定。

  結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)8

  一、知識(shí)總結(jié)

  (一)平方根與立方根

  1、平方根

  (1)定義:一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根,也叫做二次方根。

  (2)表示:非負(fù)數(shù)a的平方根記作± ,讀作“正負(fù)根號(hào)a”,(a叫做被開方數(shù))

  (3)性質(zhì):正數(shù)的平方根有兩個(gè),且互為相反數(shù);0的平方根為0;負(fù)數(shù)的沒有平方根。

  (4)開平方:求平方根的運(yùn)算叫做開平方。

 、、平方根是開平方的結(jié)果;Ⅱ、 開平方與平方互為逆運(yùn)算。

  2、算術(shù)平方根

  (1)定義:正數(shù)a的正的平方根a叫做a的算術(shù)平方根,0的算術(shù)平方根是0。

  (2)性質(zhì):(1)一個(gè)數(shù)a的算術(shù)平方根具有非負(fù)性; 即:a≥0恒成立。

  (2)正數(shù)的算術(shù)平方根只有1個(gè),且為正數(shù);0的算術(shù)平方根是0; 負(fù)數(shù)的沒有算術(shù)平方根。

  3、立方根:

  (1)定義:一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根,也叫做三次方根。

  (2)表示:a的立方根記作a,讀作“三次根號(hào)a”(a叫做被開方數(shù),3叫根指數(shù))

  (3)性質(zhì):正數(shù)的立方根是1個(gè)正數(shù);負(fù)數(shù)的立方根是1個(gè)負(fù)數(shù);0的'立方根是0。

  (二)實(shí)數(shù)

  1、無理數(shù):無限不循環(huán)的小數(shù)。(一個(gè)無理數(shù)與若干有理數(shù)之間的運(yùn)算結(jié)果還是無理數(shù))

  2、實(shí)數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。

  3、實(shí)數(shù)分類:(1)按定義分(略) (2)按正負(fù)性分(略)

  4、實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。

  5、實(shí)數(shù)的相反數(shù)、絕對(duì)值、倒數(shù):(與有理數(shù)的相反數(shù)、絕對(duì)值、倒數(shù)意義類似)

  6、實(shí)數(shù)的運(yùn)算:實(shí)數(shù)與有理數(shù)一樣,可以進(jìn)行加、減、乘、除、乘方運(yùn)算,正數(shù)及零可以進(jìn)行開平方運(yùn)算,任意一個(gè)實(shí)數(shù)可以進(jìn)行開立方運(yùn)算,而且有理數(shù)的運(yùn)算法則和運(yùn)算律對(duì)于實(shí)數(shù)仍然適用。

  7、實(shí)數(shù)大。(1)正數(shù)>0 >負(fù)數(shù); (2)兩個(gè)負(fù)數(shù)相比,絕對(duì)值大的反而小;絕對(duì)值小的反而大。(3)數(shù)軸上不同的點(diǎn)表示的數(shù),右邊點(diǎn)表示的數(shù)總比左邊的點(diǎn)表示的數(shù)大。 實(shí)數(shù)比較大小的方法:作差法、平方法、作商法、倒數(shù)法、估值法

  第七章 一元一次不等式與不等式組

  一、知識(shí)總結(jié)

  (一)不等式及其性質(zhì)

  1、不等式:

  (1)定義用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.

  (2)不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解。

  (3)不等式的解集:一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過程叫做解不等式。

  不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值。

  二者的關(guān)系是:解集包括解,所有的解組成了解集。

  (4)解不等式:求不等式解的過程叫做解不等式。

  2、不等式的基本性質(zhì)

  性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。 即:如果a?b,那么a?c?b?c.

  性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性質(zhì)4:如果a?b,那么b?a.(對(duì)稱性)

  性質(zhì)5:如果a?b,b?c,那么a?c.(傳遞性)

  (二)一元一次不等式

  1、定義:含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等號(hào)兩邊都是整式的不等式, 叫做一元一次不等式。

  2.一元一次不等式的解法:

  根據(jù)是不等式的基本性質(zhì);一般步驟為:(1)去分母;(2)去括號(hào);(3)移項(xiàng);

  (4)合并同類項(xiàng);(5)系數(shù)化為1.

  解不等式應(yīng)注意:①去分母時(shí),每一項(xiàng)都要乘同一個(gè)數(shù),尤其不要漏乘常數(shù)項(xiàng);②移項(xiàng)時(shí)不要忘記變號(hào);③去括號(hào)時(shí),若括號(hào)前面是負(fù)號(hào),括號(hào)里的每一項(xiàng)都要變號(hào);④在不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變。

  3.不等式的解集在數(shù)軸上表示:

  (1)邊界:有等號(hào)的是實(shí)心圓圈,無等號(hào)的是空心圓圈;(2)方向:大向右,小向左

  (三)一元一次不等式組

  1、定義:有幾個(gè)含有同一個(gè)未知數(shù)的一元一次不等式組成的不等式組,叫做一元一次不等式組

  2、(一元一次)不等式組的解集:這幾個(gè)不等式解集的公共部分,叫做這個(gè)(一元一次)不等式組的解集。

  3、解不等式組:求不等式組解集的過程,叫做解不等式組。 4、一元一次不等式組的解法

  1)分別求出不等式組中各個(gè)不等式的解集

  2)利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

  (四)一元一次不等式(組)解決實(shí)際問題

  解題的步驟:

 、艑忣},找出不等關(guān)系→ ⑵設(shè)未知數(shù)→ ⑶列出不等式(組)→

 、惹蟪霾坏仁降慕饧 ⑸找出符合題意的值→ ⑹作答。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)9

  平行線具有性質(zhì)

  性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

  性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。簡單說成:兩直線平行,內(nèi)錯(cuò)角相等。

  性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡單說成:兩直線平行,同旁內(nèi)角互補(bǔ)。

  同時(shí)垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。

  判斷一件事情的'語句叫做命題。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)10

  1. 平面上不相重合的兩條直線之間的位置關(guān)系為_______或________

  2. 兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對(duì)頂角相等。P3 例;P8 2題;P9 7題;P35 2(2);P35 3題

  3. 兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。

  4. 垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5. 做直角三角形的高:兩條直角邊即是鈍角三角形的高,只要做出斜邊上的高即可。

  6.做鈍角三角形的高:最長的`邊上的高只要向最長邊引垂線即可,另外兩條邊上的高過邊所對(duì)的頂點(diǎn)向該邊的延長線做垂線。

  7. 垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。

  8. 垂線段最短;

  9. 點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度。

  10. 兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。

  P7 例、練習(xí)1

  11. 平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  12. 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c P17 4題

  13. 平行線的判定。P15 例 結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。

  P15 練習(xí);P17 7題;P36 8題。

  14. 平行線的性質(zhì)。P21 練習(xí)1,2;P23 6題

  15. 命題:如果+題設(shè),那么+結(jié)論。P22練習(xí)1

  16. 真、假命題P24 11題;P37 12題

  17. 平移的性質(zhì)P28歸納

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)11

  1.判斷一個(gè)方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。

  2.二元一次方程的解:一個(gè)二元一次方程有無數(shù)個(gè)解,而每一個(gè)解都是一對(duì)數(shù)值。求二元一次方程的解的方法:若方程中的未知數(shù)為x,y,可任取x的一些值,相應(yīng)的可算出y的值,這樣,就會(huì)得到滿足需要的數(shù)對(duì)。

  3.二元一次方程組:兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。作為二元一次方程組的兩個(gè)方程,不一定都含有兩個(gè)未知數(shù),可以其中一個(gè)是一元一次方程,另一個(gè)是二元一次方程。

  4.二元一次方程組的解:使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的`兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程組的解的方法是,將兩個(gè)未知數(shù)分別代入方程組中的兩個(gè)方程,如果都能滿足這兩個(gè)方程,那么它就是方程組的解。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)12

  本章重點(diǎn):一元一次不等式的解法,

  本章難點(diǎn):了解不等式的解集和不等式組的解集的確定,正確運(yùn)用不等式基本性質(zhì)3。

  本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.

 。1)不等式概念:用不等號(hào)(“≠”、“”)表示的不等關(guān)系的式子叫做不等式(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).

  (3)分清不等式的解集和解不等式是兩個(gè)完全不同的概念.(4)不等式的解一般有無限多個(gè)數(shù)值,把它們表示在數(shù)軸上,(5)一元一次不等式的概念、解法是本章的重點(diǎn)和核心

  (6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集

  (7)由兩個(gè)一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(gè)(同未知數(shù)的)一元一次不等式組成(8).利用數(shù)軸確定一元一次不等式組的解集第六章:

  1.二元一次方程,二元一次方程組以及它的.解,明確二元一次方程組的解是一對(duì)未知數(shù)的值,會(huì)檢驗(yàn)一對(duì)數(shù)值是不是某一個(gè)二元一次方程組的解.

  2.一次方程組的兩種基本解法,能靈活運(yùn)用代入法,加減法解二元一次方程組及簡單的三元一次方程組.

  3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實(shí)際意義,檢查結(jié)果是否合理.本章的重點(diǎn)是:二元一次方程組的解法代入法,加減法以及列一次方程組解簡單的應(yīng)用問題.

  本章的難點(diǎn)是:

  1.會(huì)用適當(dāng)?shù)南椒ń舛淮畏匠探M及簡單的三元一次方程組;2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.第七章

  本章重點(diǎn)是:整式的乘除運(yùn)算,特別是對(duì)冪的運(yùn)算及乘法公式的應(yīng)用要達(dá)到熟練程度.本章難點(diǎn)是:對(duì)乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用1.冪的運(yùn)算性質(zhì),正確地表述這些性質(zhì),并能運(yùn)用它們熟練地進(jìn)行有關(guān)計(jì)算.

  2.單項(xiàng)式乘以(或除以)單項(xiàng)式,多項(xiàng)式乘以(或除以)單項(xiàng)式,以及多項(xiàng)式乘以多項(xiàng)式的法則,熟練地運(yùn)用它們進(jìn)行計(jì)算.

  3.乘法公式的推導(dǎo)過程,能靈活運(yùn)用乘法公式進(jìn)行計(jì)算.4.熟練地運(yùn)用運(yùn)算律、運(yùn)算法則進(jìn)行運(yùn)算,

  5.體會(huì)用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.第八章:

  1、認(rèn)識(shí)事物的幾種方法:觀察與實(shí)驗(yàn)歸納與類比猜想與證明生活中的說理數(shù)學(xué)中的說理

  2、定義、命題、公理、定理3、簡單幾何圖形中的推理4、余角、補(bǔ)交、對(duì)頂角5、平行線的判定判定:一個(gè)公理兩個(gè)定理。

  公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:內(nèi)錯(cuò)角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:同旁內(nèi)角互補(bǔ)(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).平行線的性質(zhì):

  兩直線平行,同位角相等兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,同旁內(nèi)角互補(bǔ)

  由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”第九章:

  重點(diǎn):因式分解的方法,

  難點(diǎn):分析多項(xiàng)式的特點(diǎn),選擇適合的分解方法1.因式分解的概念;

  2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)3.運(yùn)用因式分解解決一些實(shí)際問題.(包括圖形習(xí)題)第十章:

  重點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題.難點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決實(shí)際問題.

  1.統(tǒng)計(jì)初步的基本知識(shí),平均數(shù)、中位數(shù)、眾數(shù)等的計(jì)算、2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計(jì)圖.

  3.應(yīng)用統(tǒng)計(jì)知識(shí)解決實(shí)際問題能解決與統(tǒng)計(jì)相關(guān)的綜合問題.

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)13

 、耪龜(shù)的立方根是正數(shù).⑵負(fù)數(shù)的立方根是負(fù)數(shù).⑶0的立方根是0.一般地,如果一個(gè)數(shù)X的立方等于a,那么這個(gè)數(shù)X就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的'立方根。

  立方和開立方運(yùn)算,互為逆運(yùn)算,初中歷史。

  互為相反數(shù)的兩個(gè)數(shù)的立方根也是互為相反數(shù)。

  負(fù)數(shù)不能開平方,但能開立方。

  立方根如何與其他數(shù)作比較?

 、抛鲞@兩個(gè)數(shù)的立方

 、谱鞑

 、潜容^被開方數(shù)(如三次根號(hào)3大于三次根號(hào)2)

  任何數(shù)(正數(shù)、負(fù)數(shù)、或零)的立方根如果存在的話,必定只有一個(gè).

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)14

  一、目標(biāo)與要求

  1.解有序數(shù)對(duì)的應(yīng)用意義,了解平面上確定點(diǎn)的常用方法。

  2.培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣。

  3.掌握坐標(biāo)變化與圖形平移的`關(guān)系;能利用點(diǎn)的平移規(guī)律將平面圖形進(jìn)行平移;會(huì)根據(jù)圖形上點(diǎn)的坐標(biāo)的變化,來判定圖形的移動(dòng)過程。

  4.發(fā)展學(xué)生的形象思維能力,和數(shù)形結(jié)合的意識(shí)。

  5.坐標(biāo)表示平移體現(xiàn)了平面直角坐標(biāo)系在數(shù)學(xué)中的應(yīng)用。

  二、重點(diǎn)

  掌握坐標(biāo)變化與圖形平移的關(guān)系;

  有序數(shù)對(duì)及平面內(nèi)確定點(diǎn)的方法。

  三、難點(diǎn)

  利用坐標(biāo)變化與圖形平移的關(guān)系解決實(shí)際問題;

  利用有序數(shù)對(duì)表示平面內(nèi)的點(diǎn)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15

  用數(shù)軸表示數(shù),右邊的.數(shù)總比左邊的數(shù)大:正數(shù)>0>負(fù)數(shù)

  (1)作差比較法:

  若a-b>0,則a>b

  若a-b=0,則a=b

  若a-b<0,則a

  (2)作商比較法:

  設(shè)b>0,有若a/b>1,則a>b;若a/b=1,則a=b;若a/b<1,則a

  當(dāng)b<0,a<0時(shí):若a>1,則ab。

  (4)倒數(shù)比較法

  若a>b>0,則1/a<1/b

  若a1/b

  若a<0

  (5)絕對(duì)值比較法:

  若a<0、b<0,則丨a丨>丨b丨,ab。

  (6)兩數(shù)平方法:如實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對(duì)之間一一對(duì)應(yīng)。

【初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)11-29

初一下冊(cè)數(shù)學(xué)必備知識(shí)點(diǎn)02-14

初一數(shù)學(xué)下冊(cè)重點(diǎn)知識(shí)點(diǎn)總結(jié)02-17

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)08-07

初一下冊(cè)數(shù)學(xué)考試知識(shí)點(diǎn)06-27

【精選】初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總07-30

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總07-19

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納12-17

[精]初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)08-11

初一語文下冊(cè)知識(shí)點(diǎn)10-18